
Copyright© 2011 KRvW Associates, LLC

Building Bulletproof iOS Apps
FIRST 2011, Vienna, Austria

Ken van Wyk
ken@krvw.com

Copyright© 2011 KRvW Associates, LLC

Your Instructor – Ken van Wyk
ken@krvw.com

Work Experience
– 20+ years in Information Security

 CMU CERT/CC Founder
 DoD CERT
 SAIC, Para-Protect
 President and Founder, KRvW Associates, LLC

Security Work
– Technical lead on hundreds of commercial engagements since 1996, including

 Application security assessments
 Enterprise risk assessments
 Secure network architecture
 Security testing of enterprises and applications

– Author of two popular O’Reilly and Associates books
 Incident Response: Planning and Management
 Secure Coding: Principles and Practices

Credentials
– BS Lehigh University 1985

 Mechanical Engineering

Personal Interests
– Travel, world cuisine, wine, mountain biking, zymurgy

Family (http://www.vanwyk.org/ken)
– Wife, two spectacularly spoiled basset hounds

2

Copyright© 2011 KRvW Associates, LLC

Mobile platforms

How secure are today’s
mobile platforms?
–Lots of similarities to web

applications but...
Gold rush mentality
–Developers are on a death

march to produce apps
–Unprecedented rate
–Security often suffers...

3

Copyright© 2011 KRvW Associates, LLC

Typical mobile app

Most enterprise apps are
basically web apps
–Clients issue web services

request
SOAP or RESTful
XML or JSON data

–Servers respond with XML
data stream

Almost all web
weaknesses are relevant

4

Copyright© 2011 KRvW Associates, LLC

OWASP Top-10 (2010)

1.Injection
2.Cross-site scripting
3.Broken authentication

and session management
4.Insecure direct object

reference
5.Cross site request

forgery

6.Security
misconfiguration (new)

7.Insecure crypto storage
8.Failure to restrict URL

access
9.Insecure transport layer

protection
10.Unvalidated redirects

and forwards (new)

5

Copyright© 2011 KRvW Associates, LLC

Biggest issue: lost/stolen device

Anyone with physical
access to your device can
get to a wealth of data
–PIN is not effective
–App data
–Keychains
–Properties
See forensics results

6

Copyright© 2011 KRvW Associates, LLC

Second biggest: insecure comms

Without additional
protection, iOS devices
are susceptible to the
“coffee shop attack”
–Anyone on an open WiFi

can eavesdrop on your data
–No different than any other

WiFi device really
Your apps MUST protect
your users’ data in transit

7

Copyright© 2011 KRvW Associates, LLC

Security Principles

Copyright© 2011 KRvW Associates, LLC

Common security controls

All relevant on mobile
devices
– Input/output validation
–Protecting secrets

At rest
 In transit

–Authentication
–Session management
–Access control
–Privacy concerns

9

Copyright© 2011 KRvW Associates, LLC

Take a look - a typical app home

Explore folders
– ./Documents
– ./Library/Caches/*
– ./Library/Cookies
– ./Library/Preferences
App bundle
–Hexdump of binary
–plist file
What else?

10

Copyright© 2011 KRvW Associates, LLC

iOS application architecture

The iOS platform is
basically a subset of a
regular Mac OS X
system’s
–From user level (Cocoa)

down through Darwin
kernel

–Apps can reach down as
they choose to

–Only published APIs are
permitted, however

11

Copyright© 2011 KRvW Associates, LLC

Key security features

Application sandboxing
App store protection
Hardware encryption
Keychains
SSL and certificates

12

Copyright© 2011 KRvW Associates, LLC

Application sandboxing

By policy, apps are only
permitted to access
resources in their sandbox
–Inter-app comms are by

established APIs only
URLs, keychains (limited)

–File i/o in ~/Documents
only

Sounds pretty good, eh?

13

Copyright© 2011 KRvW Associates, LLC

App store protection

Access is via digital
signatures
– Only registered developers

may introduce apps to store
– Only signed apps may be

installed on devices
Sounds good also, right?
– But then there’s

jailbreaking...
– Easy and free
– Completely bypasses sigs

14

Copyright© 2011 KRvW Associates, LLC

App Store Review Limitations

Don’t count on the App Store
to find your app’s
weaknesses
Consider what they can
review
– Memory leaks, functionality
– Playing by Apple’s rules

 Published APIs only

– Protecting app data?
 Do they know your app?

– Deliberate malicious
“features”?

15

Copyright© 2011 KRvW Associates, LLC

Hardware encryption

Each iOS device (as of
3g) has hardware crypto
module
–Unique AES-256 key for

every iOS device
–Sensitive data hardware

encrypted
Sounds brilliant, right?
–Well...

16

Copyright© 2011 KRvW Associates, LLC

Keychains

Keychain API provided
for storage of small
amounts of sensitive data
–Login credentials,

passwords, etc.
–Encrypted using hardware

AES
Also sounds wonderful
–Wait for it...

17

Copyright© 2011 KRvW Associates, LLC

SSL and x.509 certificate handling

API provided for SSL and
certificate verification
–Basic client to server SSL is

easy
–Mutual verification of

certificates is achievable,
but API is complex

Overall, pretty solid
–Whew!

18

Copyright© 2011 KRvW Associates, LLC

And a few glitches...

Keyboard data
Screen snapshots
Hardware encryption is
flawed

19

Copyright© 2011 KRvW Associates, LLC

Keyboard data

All “keystrokes” are
stored
–Used for auto-correct

feature
–Nice spell checker
Key data can be harvested
using forensics
procedures
–Passwords, credit cards...
–Needle in haystack?

20

Copyright© 2011 KRvW Associates, LLC

Screen snapshots

Devices routinely grab
screen snapshots and store
in JPG
–Used for minimizing app

animation
– It looks pretty
WHAT?!
–It’s a problem
–Requires local access to

device, but still...

21

Copyright© 2011 KRvW Associates, LLC

But the clincher

Hardware module protects
unique key via device PIN
–PIN can trivially be disabled
–Jailbreak software
No more protection...

22

Copyright© 2011 KRvW Associates, LLC

Discouraged?

If we build our apps using
these protections only,
we’ll have problems
– But consider risk
– What is your app’s “so

what?” factor?
– What data are you

protecting?
– From whom?
– Might be enough for some

purposes
23

Copyright© 2011 KRvW Associates, LLC

But for a serious enterprise...

The protections provided
are simply not adequate to
protect serious data
–Financial
–Privacy
–Credit cards
We need to further lock
down
–But how much is enough?

24

Copyright© 2011 KRvW Associates, LLC

Application Architecture
How do we build our apps securely?

Copyright© 2011 KRvW Associates, LLC

Common app types

Web app
Web-client hybrid
App
–Stand alone
–Client-server
–Networked
Decision time...

26

Copyright© 2011 KRvW Associates, LLC

Web applications

Don’t laugh--you really
can do a lot with them
–Dashcode is pretty slick
–Can give a very solid UI to

a web app
Pros and cons
–Data on server (mostly)
–No app store to go through
–Requires connectivity

27

Copyright© 2011 KRvW Associates, LLC

Web-client hybrid

Local app with web views
–Still use Dashcode on web

views
–Local resources available

via Javascript
Location services, etc

Best of both worlds?
–Powerful, dynamic
–Still requires connection

28

Copyright© 2011 KRvW Associates, LLC

iOS app -- client-server

Most common app for
enterprises
– Basically alternate web client

for many
– But with iOS UI on client

side
– Server manages access,

sessions, etc.
Watch out for local storage
– Avoid if possible
– Encrypt if not

29

Copyright© 2011 KRvW Associates, LLC

iOS app -- networked

Other network
architectures also
–Internet-only
–P2P apps
Not common for
enterprise purposes

30

Copyright© 2011 KRvW Associates, LLC

Major APIs where security matters

There are many places
where you have to take extra
caution
– Keystroke logging
– Cut/paste
– Backgrounding
– Frameworks

 Keychain
 Networking
 Crypto
 Randomness
 Geolocation

31

Copyright© 2011 KRvW Associates, LLC

Keyboard logging

Used by spell checker, autocompletion, etc.
–Turned on everywhere by default
–Disabled for password fields
–You must manually turn off for other sensitive data fields

Set UITextField property autocorrectionType =
UITextAutocorrectionNone

See iOS Application Programming Guide

32

Copyright© 2011 KRvW Associates, LLC

Cut and paste buffer

Available pretty much everywhere, to all apps
–Two primary access methods

UIPasteboardNameGeneral and UIPasteboardNameFind
–Take caution to clean up after use
See iOS Application Programming Guide

33

Copyright© 2011 KRvW Associates, LLC

Don’t forget screen shots

When an app
backgrounds, a screen
shot is snapped
–Safest bet is to disallow

UIApplicationExitsOnSuspend
Set in info.plist

– If not feasible, clear data
–Detect/control backgrounds

Several key methods for
controlling backgrounding

34

Copyright© 2011 KRvW Associates, LLC

Backgrounding safely

Key delegated methods to control
–applicationDidEnterBackground

Set any sensitive fields hidden
– viewController.secretData.hidden = YES;

–applicationDidBecomeActive
Before returning control, be sure to restore any sensitive user data

– viewController.secreData.hidden = NO;

This causes screen shot to be saved, but without
sensitive data

35

Copyright© 2011 KRvW Associates, LLC

Relevant backgrounding methods

Also look at
–applicationWillEnterForeground:
–applicationWillTerminate:
–applicationDidBecomeActive
–applicationWillResignActive
–applicationDidEnterBackground
–application: didFinishLaunchingWithOptions:
See iOS Application Programming Guide

36

Copyright© 2011 KRvW Associates, LLC

Common frameworks - Keychain

Used for storing credentials
–Protected by system AES and PIN

Further protection in app is advisable
–Primary methods

SecItemCopyMatching, SecItemAdd, SecItemUpdate,
SecItemDelete

–Adequate for consumer-grade data
See Keychain Services Programming Guide

37

Copyright© 2011 KRvW Associates, LLC

Common frameworks - Network

APIs in various layers
– WebKit

 Safari browser and UIWebView
– NSURL

 Cocoa Obj-C
 Does most of the heavy lifting for you

– CFNetwork
 Core Foundation layer - more control over behavior
 Supports sockets, streams, etc.

– BSD Sockets
– All support SSL

See CFNetwork Programming Guide

38

Copyright© 2011 KRvW Associates, LLC

Common frameworks - Crypto

Certificate, key, and trust services
– In Core Foundation layer
–Methods for

Certificate management (generate, add, delete, find, update)
Evaluate a certificate’s trust
Encrypt and decrypt

See Certificate, Key, and Trust Services
Programming Guide

39

Copyright© 2011 KRvW Associates, LLC

Common frameworks - Random

When you have a need for strong randomness
–Avoid /dev/random
–Instead, use SecRandomCopyBytes

 int sesskey = SecRandomCopyBytes
(kSecRandomDefault, sizeof(int),
(uint8_t*)& randomResult);

See Randomization Services Reference

40

Copyright© 2011 KRvW Associates, LLC

Common frameworks - Location

Easy to use but fraught with peril
–Privacy concerns make this the “third rail” of iOS dev
–Don’t store users’ locations
– If you must, only do so on an “opt-in” basis
See Location Awareness Programming Guide

41

Copyright© 2011 KRvW Associates, LLC

Common Security Mechanisms
Now let’s build security in

Copyright© 2011 KRvW Associates, LLC

Common mechanisms

Input validation
Output escaping
Authentication
Session handling
Protecting secrets
–At rest
– In transit
SQL connections

43

Copyright© 2011 KRvW Associates, LLC

Input validation

Positive vs negative
validation
–Dangerous until proven safe
–Don’t just block the bad
Consider the failures of
desktop anti-virus tools
–Signatures of known viruses

44

Copyright© 2011 KRvW Associates, LLC

Input validation architecture

We have several choices
–Some good, some bad
Positive validation is our
aim
Consider tiers of security
in an enterprise app
–Tier 1: block the bad
–Tier 2: block and log
–Tier 3: block, log, and take

evasive action to protect
45

Copyright© 2011 KRvW Associates, LLC

Input validation (in iOS)
// RFC 2822 email addres regex.
NSString *emailRegex =
 @"(?:[a-z0-9!#$%\\&'*+/=?\\^_`{|}~-]+(?:\\.[a-z0-9!#$%\\&'*+/=?\\^_`{|}"
 @"~-]+)*|\"(?:[\\x01-\\x08\\x0b\\x0c\\x0e-\\x1f\\x21\\x23-\\x5b\\x5d-\\"
 @"x7f]|\\\\[\\x01-\\x09\\x0b\\x0c\\x0e-\\x7f])*\")@(?:(?:[a-z0-9](?:[a-"
 @"z0-9-]*[a-z0-9])?\\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?|\\[(?:(?:25[0-5"
 @"]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-"
 @"9][0-9]?|[a-z0-9-]*[a-z0-9]:(?:[\\x01-\\x08\\x0b\\x0c\\x0e-\\x1f\\x21"
 @"-\\x5a\\x53-\\x7f]|\\\\[\\x01-\\x09\\x0b\\x0c\\x0e-\\x7f])+)\\])";

// Create the predicate and evaluate.
NSPredicate *regExPredicate =
 [NSPredicate predicateWithFormat:@"SELF MATCHES %@", emailRegEx];
BOOL validEmail = [regExPredicate evaluateWithObject:emailAddress];

if (validEmail) {
 ...
} else {
 ...
}

46

Copyright© 2011 KRvW Associates, LLC

Input validation (server side Java)

protected final static String ALPHA_NUMERIC =
 “^[a-zA-Z0-9\s.\-]+$”;
// we only want case insensitive letters and numbers
public boolean validate(HttpServletRequest request, String
parameterName) {
boolean result = false;
Pattern pattern = null;
parameterValue = request.getParameter(parameterName);
if(parameterValue != null) {
 pattern = Pattern.compile(ALPHA_NUMERIC);
 result = pattern.matcher(parameterValue).matches();
 return result;
} else
{ // take alternate action }

47

Copyright© 2011 KRvW Associates, LLC

Output encoding

Principle is to ensure data
output does no harm in
output context
–Output escaping of control

chars
How do you drop a “<“ into an

XML file?

–Consider all the possible
output contexts

48

Copyright© 2011 KRvW Associates, LLC

Output encoding

This is normally server
side code
Intent is to take dangerous
data and output harmlessly
Especially want to block
Javascript (XSS)
In iOS, not as much
control, but
– Never point UIWebView to

untrusted content

49

Copyright© 2011 KRvW Associates, LLC

Output encoding (server side)

Context
<body> UNTRUSTED DATA HERE </body>
<div> UNTRUSTED DATA HERE </div>
 other normal HTML elements

String safe = ESAPI.encoder().encodeForHTML(request.getParameter
(“input”));

50

Copyright© 2011 KRvW Associates, LLC

Protecting secrets at rest

The biggest problem by
far is key management
–How do you generate a

strong key?
–Where do you store the key?
–What happens if the user

loses his key?
Too strong and user
support may be an issue

51

Copyright© 2011 KRvW Associates, LLC

Built-in file protection (weak)

// API for writing to a file using writeToFile API

- (BOOL)writeToFile:(NSString *)path options:
(NSDataWritingOptions)mask error:(NSError **)
errorPtr

// To protect the file, include the
// NSDataWritingFileProtectionComplete option

52

Copyright© 2011 KRvW Associates, LLC

Protecting secrets at rest
(keychain)

// Write username/password combo to keychain.
BOOL writeSuccess = [SFHFKeychainUtils storeUsername:username
andPassword:password
 forServiceName:@"com.krvw.ios.KeychainStorage" updateExisting:YES
error:nil];
...

// Read password from keychain given username.
NSString *password = [SFHFKeychainUtils getPasswordForUsername:username
 andServiceName:@"com.krvw.ios.KeychainStorage" error:nil];
...

// Delete username/password combo from keychain.
BOOL deleteSuccess = [SFHFKeychainUtils deleteItemForUsername:username
 andServiceName:@"com.krvw.ios.KeychainStorage" error:nil];
...

53

Copyright© 2011 KRvW Associates, LLC

Enter SQLcipher

Open source extension to
SQLite
– Free
– Uses OpenSSL to AES-256

encrypt database
– Uses PBKDF2 for key

expansion
– Generally accepted crypto

standards
Available from
– http://sqlcipher.net

54

Copyright© 2011 KRvW Associates, LLC

Protecting secrets at rest
(SQLcipher)

sqlite3_stmt *compiledStmt;
// Unlock the database with the key (normally obtained via user input).
// This must be called before any other SQL operation.
sqlite3_exec(credentialsDB, "PRAGMA key = 'secretKey!'", NULL, NULL, NULL);
// Database now unlocked; perform normal SQLite queries/statments.
...
// Create creds database if it doesn't already exist.
const char *createStmt =
 "CREATE TABLE IF NOT EXISTS creds (id INTEGER PRIMARY KEY AUTOINCREMENT, username TEXT, password
TEXT)";
sqlite3_exec(credentialsDB, createStmt, NULL, NULL, NULL);
// Check to see if the user exists.
const char *queryStmt = "SELECT id FROM creds WHERE username=?";
int userID = -1;
if (sqlite3_prepare_v2(credentialsDB, queryStmt, -1, &compiledStmt, NULL) == SQLITE_OK) {
 sqlite3_bind_text(compiledStmt, 1, [username UTF8String], -1, SQLITE_TRANSIENT);
 while (sqlite3_step(compiledStmt) == SQLITE_ROW) {
 userID = sqlite3_column_int(compiledStmt, 0);
 }
}
if (userID >= 1) {
 // User exists in database.
 ...
}

55

Copyright© 2011 KRvW Associates, LLC

Protecting secrets in transit

Key management still
matters, but SSL largely
takes care of that
–Basic SSL is pretty easy in

NSURL
–Mutual certificates are

stronger, but far more
complicated

–NSURL is awkward, but it
works
See previous example

56

Copyright© 2011 KRvW Associates, LLC

Protecting secrets in transit
// Note the "https" protocol in the URL.
NSString *userJSONEndpoint =
 [[NSString alloc] initWithString:@"https://www.secure.com/api/user"];

// Initialize the request with the HTTPS URL.
NSMutableURLRequest *request =
 [MSMutableURLRequest requestWithURL:[NSURL URLWithString:userJSONEndpoint]];

// Set method (POST), relevant headers and body (jsonAsString assumed to be
// generated elsewhere).
[request setHTTPMethod:@"POST"];
[request setValue:@"application/json" forHTTPHeaderField:@"Content-Type"];
[request setValue:@"application/json" forHTTPHeaderField:@"Accept"];
[request setHTTPBody:[jsonAsString dataUsingEncoding:NSUTF8StringEncoding]];

// Submit the request.
[[NSURLConnection alloc] initWithRequest:request delegate:self];

// Implement delegate methods for NSURLConnection to handle request lifecycle.
...

57

Copyright© 2011 KRvW Associates, LLC

Authentication

This next example is for
authenticating an app user
to a server securely
–Server takes POST request,

just like a web app

58

Copyright© 2011 KRvW Associates, LLC

Authentication (forms-style)
// Initialize the request with the YouTube/Google ClientLogin URL (SSL).
NSString youTubeAuthURL = @"https://www.google.com/accounts/ClientLogin";
NSMutableRequest *request =
 [NSMutableURLRequest requestWithURL:[NSURL URLWithString:youTubeAuthURL]];

[request setHTTPMethod:@"POST"];

// Build the request body (form submissions POST).
NSString *requestBody =
 [NSString stringWithFormat:@"Email=%@&Passwd=%@&service=youtube&source=%@",
 emailAddressField.text, passwordField.text, @"Test"];

[request setHTTPBody:[requestBody dataUsingEncoding:NSUTF8StringEncoding]];

// Submit the request.
[[NSURLConnection alloc] initWithRequest:request delegate:self];

// Implement the NSURLConnection delegate methods to handle response.
...

59

Copyright© 2011 KRvW Associates, LLC

Session handling

Normally controlled on
the server for client-server
apps
Varies tremendously from
one tech and app
container to another
Basic session rules apply
Testing does help, though

60

Copyright© 2011 KRvW Associates, LLC

SQL connections

Biggest security problem
is using a mutable API
–Weak to SQL injection
Must use immutable API
–Similar to

PreparedStatement in Java
or C#

61

Copyright© 2011 KRvW Associates, LLC

SQL connections
// Update a users's stored credentials.
sqlite3_stmt *compiledStmt;
const char *updateStr = "UPDATE credentials SET username=?, password=? WHERE id=?";

// Prepare the compiled statement.
if (sqlite3_prepare_v2(database, updateStr, -1, &compiledStmt, NULL) == SQLITE_OK) {
 // Bind the username and password strings.
 sqlite3_bind_text(compiledStmt, 1, [username UTF8String], -1, SQLITE_TRANSIENT);
 sqlite3_bind_text(compiledStmt, 2, [password UTF8String], -1, SQLITE_TRANSIENT);

 // Bind the id integer.
 sqlite3_bind_int(compiledStmt, 3, userID);

 // Execute the update.
 if (sqlite3_step(compiledStmt) == SQLITE_DONE) {
 // Update successful.
 }
}

62

Copyright© 2011 KRvW Associates, LLC

Other pitfalls

Format string issues from C
NSString	
 outBuf	
 =	
 @”String	
 to	
 be	
 appended”;	

outBuf	
 =	
 [outBuf	
 stringByAppendingFormat:[UtilityClass	

formatBuf:	
 unformattedBuff.text]];

vs.

NSString	
 outBuf	
 =	
 @”String	
 to	
 be	
 appended”;	

outBuf	
 =	
 [outBuf	
 stringByAppendingFormat:@”%@”,[UtilityClass	

formatBuf:	
 unformattedBuff.text]];

63

Copyright© 2011 KRvW Associates, LLC

Where to begin?
If this all sounds daunting...

Copyright© 2011 KRvW Associates, LLC

Plenty of resources

There are some excellent
resources available to
help you dive deep into
these topics
–Let’s take a look at a few

65

Copyright© 2011 KRvW Associates, LLC

Stanford Univ on iTunes

Absolutely the best
immersion into iOS,
Objective C, and
COCOA that I’ve found
–http://itunes.apple.com/

WebObjects/MZStore.woa/
wa/viewPodcast?
id=395605774

All for free
–Thanks Stanford!!!

66

Copyright© 2011 KRvW Associates, LLC

Apple resources

Excellent developer
references and manuals
on iOS Developer Portal
–http://developer.apple.com/

devcenter/ios/index.action
Several free iBooks also
–Objective C
–COCOA Framework

67

Copyright© 2011 KRvW Associates, LLC

Also look at OWASP

Numerous information
resources that are relevant
to mobile apps
–Mobile Security Project
Growing community of
mobile developers at
OWASP

68

Copyright© 2011 KRvW Associates, LLC

...and ANNOUNCING

A new OWASP project
– iGoat
–Developer tool for learning

major security issues on iOS
platform

–Inspired by OWASP’s
WebGoat tool for web apps

Released TODAY!

69

Copyright© 2011 KRvW Associates, LLC

Kenneth R. van Wyk
KRvW Associates, LLC

Ken@KRvW.com
http://www.KRvW.com

