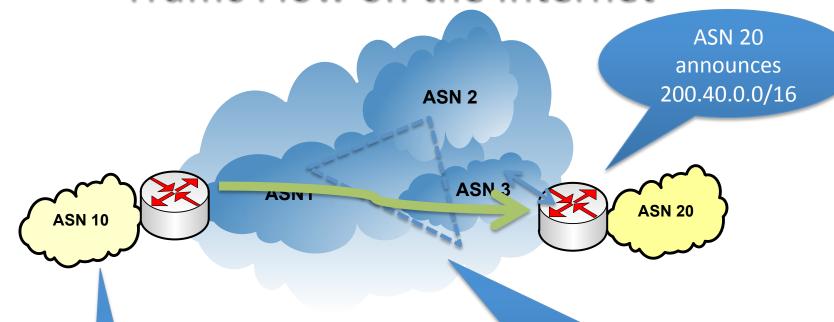
Internet Resource Certification and Origin Validation

An approach to more secure routing on the Internet

Carlos Martinez – Cagnazzo carlos @ lacnic.net



Agenda

- Traffic routing on the Internet
- Route Hijacking
- Current counter-measures
- Resource certification
- Origin validation
- References

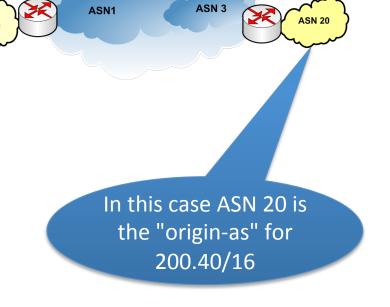
Traffic Flow on the Internet

The 200.40.0.0/16 prefix propagates accross ASs (via BGP sessions)

ASN 10 receives announcement for 200.40.0.0/16

Each router applies a decision algorithm

Each announcement carries a set of attributes: 200.40.0.0/16 **AS_PATH** ASN1 ASN3 **ASN6057**



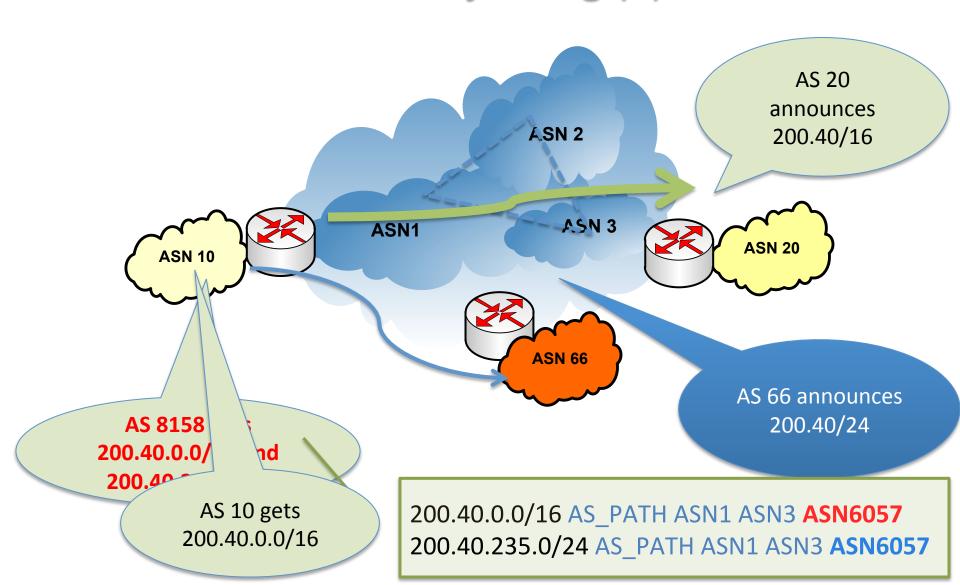
Routing in the Internet (ii)

 BGP chooses routes using a decision algorithm and the values of the set of available attributes

 AS_PATH is a list of the autonomous systems a given UPDATE has traversed

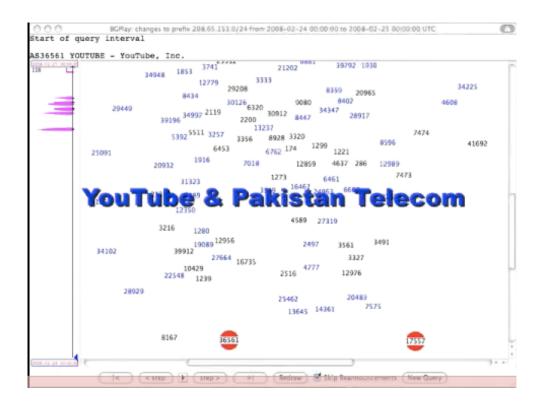
The first entry is the AS originating the route (hence "origin-as")

ASN 2



Route Hijacking

- When an entity participating in Internet routing announces a prefix without authorization We face a route hijack
- Malicious or due to operational mistakes
 - Most of the time you just can't tell
- Some well-known cases:
 - Pakistan Telecom vs. You Tube (2008)
 - China Telecom capturing traffic to/from the U.S. (2010)
 - Google in Eastern Europe (various ASs, 2010)
 - Some occurrences in LACNIC's service region (January/ February 2011)
 - One ongoing occurrence (CL CO)


Route Hijacking (ii)

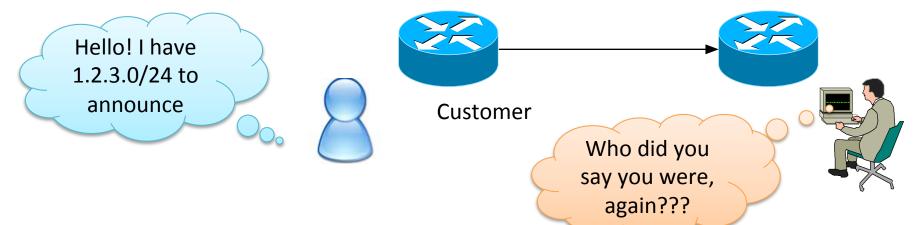
Route Hijacking (iii)

- RIPE NCC Video of the YouTube incident
 - http://www.youtube.com/watch?v=IzLPKuAOe50

Route Hijacking Mitigation Current Practices

Peering Relationships Upstream / Transit Provider Hello! I have 1.2.3.0/24 to announce Customer

- Upstreams should check whether customers are authorized to announce resources
 - Some ask for an email to be sent to a specific address, others ask for a web form, others ask for entries in IRRs, others check WHOIS
 - Not consistent, varies from carrier to carrier
 - Sometimes from customer to customer of the same carrier

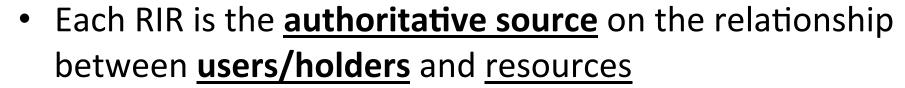

Peering Relationships (ii) Upstream / Transit Provider Hello! I have 1.2.3.0/24 to announce Customer Sure! Send whatever you have!

- •In the end the integrity of the routing system depends on ad-hoc trust relationships between peers
- The problem lies in that
 - Checks are inconsistently applied
 - Sometimes no verification at all is performed
 - Current tools are ill-suited for automating this process

Peering Relationships (iii)

Upstream / Transit Provider

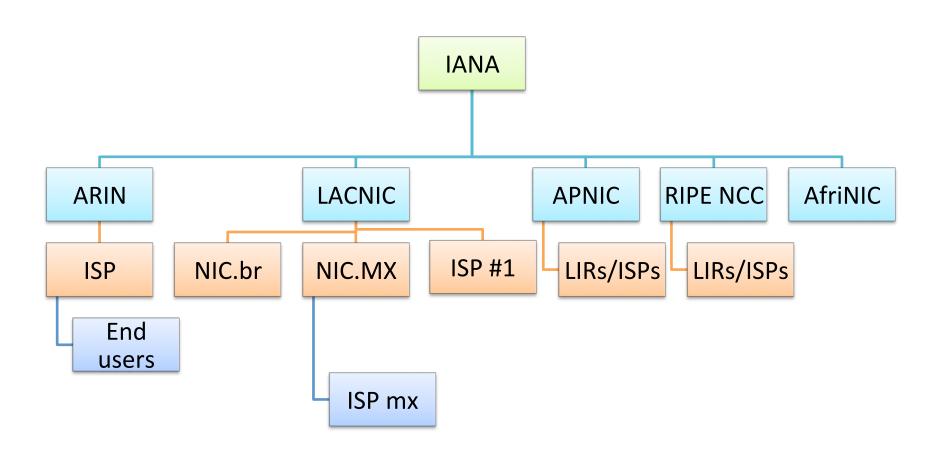
- Other recommended practices include
 - uRPF filtering where applicable
 - Routing protocol integrity
 - Peer authentication w/ MD5 passwords
- Filtering known-invalid routes
 - Filter RFC 1918 and other well-known bogons



Resource Certification and Origin Validation

Internet Number Resource Management

- What do we mean by resources?
 - IPv4, IPv6 Addresses, ASNs
- Five regional registries
 - AFRINIC, APINIC, ARIN, LACNIC
 - RIPE-NCC
- One central pool: IANA



- Each RIR operates a registry database
- Each RIR has a contract with the organizations receiving resources

Internet Number Resource Management (ii)

Resource Public Key Infrastructure (RPKI)

Goals:

- Create cryptographic proofs (certificates) that serve as proof of resource holdership
- Enable automatic verification of route announcements in routers

High-level overview

- Use of X.509 v3 certificates
- Use RFC 3779 extensions on these certificates. These extensions allow Internet resources (IPv4/IPv6/ASNs) fields within certificates
- ROAs: Signed objects that contain origin AS data.
- Mechanisms to push validated data to routers and to automatically check the "origin-as" of a BGP UPDATE

Resource PKI (ii)

- All RPKI signed objects are listed in public repositories
- After verification, these objects can be used to configure policy in routers
- Validation Process
 - Signed objects have references to the certificate used to sign them
 - The resources listed in a certificate MUST be valid subsets of the resources listed in its parent's certificate
 - The trust chain is traced to the trust anchor in two aspects:
 - Cryptographically
 - CIDR terms

X.509 Certificates with RFC 3779 extensions

- "IP Delegation" Section
 - Special value: "INHERITED"
- "AS Delegation" Section
 - Special value: "INHERITED"
- Validation Process
 - Traditional crypto validation
 - Signature chain up to the trust anchor
 - Additionally involves validation of resources
 - CIDR (AKA subnetting) inclusion

Version

Serial Number

Signature Algorithm

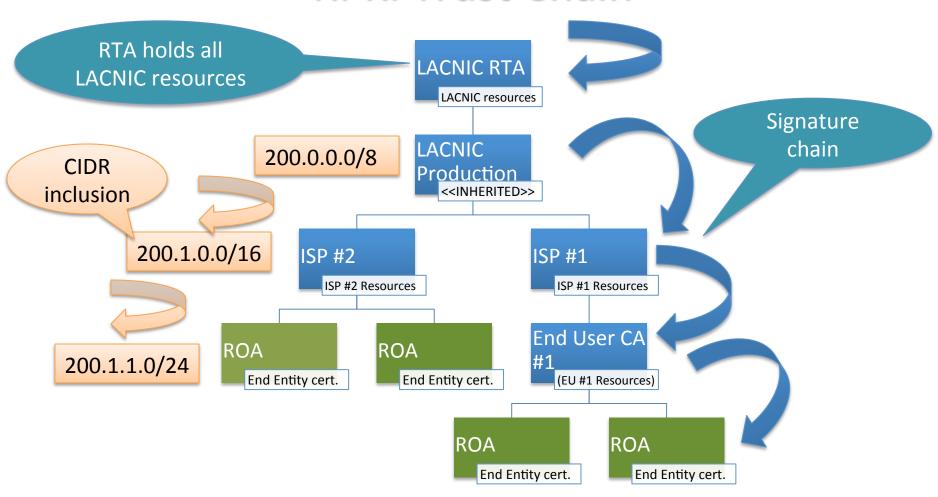
Issuer

Subject

Subject Public Key

Extensions

Subject Information Authority (SIA)


Authority Information
Access (AIA)

Addr: 10.10.10.0

Asid: 65535

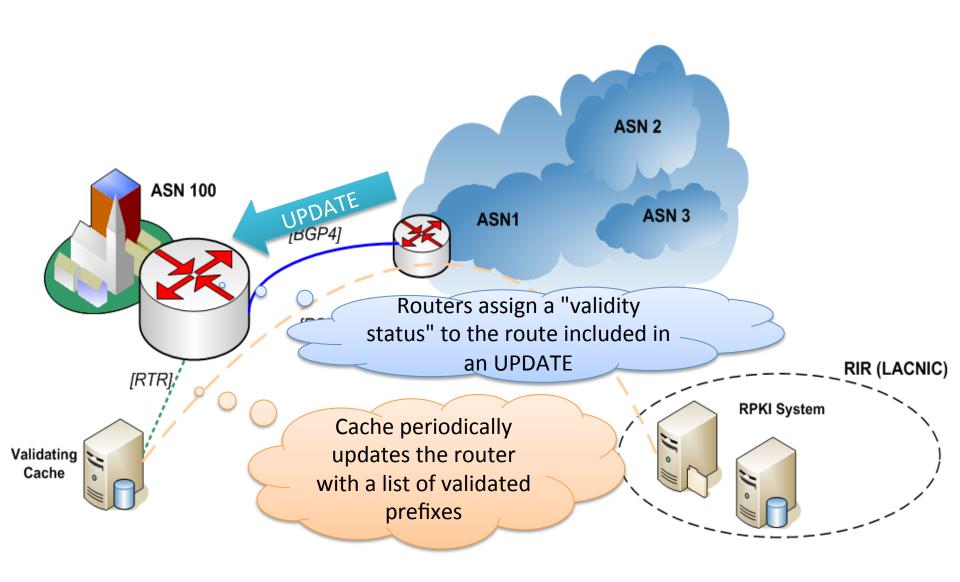
RPKI Trust Chain

Route Origin Authorizations

A ROA provides a signed statement of route origination:

Prefix	Max_Len	Origin_AS	Valid_Since	Valid_Until
200.40.0.0/17	20	10	2011-01-02	2013-01-01
200.3.12.0/22	24	20	2011-01-02	2013-01-01

- The first ROAs states that:
 - "The prefix 200.40.0.0/17 will be originated by ASN 10 and could be de-aggregated up to /20" "This statement is valid starting on Jan 2, 2011 until Jan 1, 2013"
- ROAs also contain an EE certificate with the resources listed



ROAs (ii) - Validation

- In order to validate a ROA three steps are performed
 - Crypto validation of the public keys and signatures included in the EE certificates inside each ROA
 - CIDR inclusion checking of resources listed in the EE certificate
 - CIDR inclusion checking of resources in the route origin attestations. These resources have to be included in the resources listed in the EE certificate

RPKI in Action – The whole system

BGP UPDATE Validation

prefix/[min_len – max_len]	Origin AS
172.16.0.0 / [16-20]	10
200.0.0/[8-21]	20

- If the "UPDATE pfx" is not covered by any entry in the DB -> "not found"
- If the "UPDATE pfx" is covered by at least one entry in the DB, and the origin-AS matches the ASNs in the DB -> "valid"
- If the origin-AS does NOT match -> "invalid"

BGP UPDATE Validation (ii)

UPDATE 200.0.0 0/9 ORIGIN-AS 66

INVALIDx_len]	Origin AS
172.16.0.0 / [16-20]	10
200.0.0/[8-21]	20

- If the "UPDATE pfx" is not covered by any entry in the DB -> "not found"
- If the "UPDATE pfx" is covered by at least one entry in the DB, and the origin-AS matches the ASNs in the DB -> "valid"
- If the origin-AS does NOT match -> "invalid"

Links / References

- The LACNIC RPKI System
 - http://rpki.lacnic.net/
- LACNIC's RSYNC Repository
 - rsync://repository.lacnic.net/rpki/
- Listing the repository
 - rsync --list-only rsync://repository.lacnic.net/rpki/lacnic/
- Some RPKI Statistics
 - http://www.labs.lacnic.net/~rpki

Thank You!

carlos @ lacnic.net