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Agenda 
• Introduction. 
• Cryptanalysis of File #1. 
• Cryptanalysis of File #2. 
• Cryptanalysis of File #3. 



Introduction 
• CPqD was hired by a big Brazilian company to find out 

which information had been stolen by three different 
malwares, that infected its environment. 

• Each one of them stored information in encrypted form 
using different mechanisms. 

• We did only have access to the encrypted files and the 
malware binaries, meaning we could not use the special 
purpose hardware targeted by them. 

• Due to the sensitivity of the stolen data and signed NDA, 
this talk will not use the real information we retrieved from 
those files. 



Covered topics 
• Detection of weak cryptosystems. 
• Cryptanalysis of classical algorithms. 
• Block ciphers. 
• DES. 
• Modes of operation. 
• Searching key in malware binary or in memory. 
• Worst scenario. 

 



File #1 – Sample 



File #1 – Histogram 



File #1 – Important facts 
• File#1 is pretty redundant. 

– This means a weak cryptosystem was used. 
• The distance between occurrences of the string 

“robin@hoo” is always multiple of its length. 
• Most of the bytes has values between 80 and 180. 

 



File #1 – Hypothesis 
• Hypothesis #1: a constant number is added to each byte 

modulo 256 and a given string is repeated several times in 
the plain text. 
– Not likely, but it should be tested. 
– How? 

• Hypothesis #2: a Vigenère cipher over an alphabet of 256 
elements and period equals 9 was used.  
– Candidate key: robin@hoo 



File #1 – First attempt 



File #1 – Correction 



File #1 – Description of cipher 
• Alphabet of definition: A = {0, 1, 2, 3, …, 255} 
• Plain text: M = m0m1m2…mt-1, mi ϵ A 
• Cipher text: C = c0c1c2…ct-1, ci ϵ A 

• Key: K = k0k1k2k3k4k5k6k7k8  
                = 0x52 4f 42 49 4e 20 48 4f 4f 
• Encryption function: ci = mi + k(i mod 9) mod 256 
• Decryption function: mi = ci – k(i mod 9) mod 256 

 



File #2 – Sample 



File #2 – Base64 decoded 



File #2 – Redundancy check 



File #2 – Base64 review 

0 0 0 0 

Encoded 1 Encoded 2 = = 

octet 

0 0 

Encoded 1 Encoded 2 Encoded 3 = 

1st octet 2nd octet 

Added bits 

Added bits 

Padding 

Padding 



File #2 – Block size? 

1) Length = 56 Base64 chars. 
2) Ends with “==”. 
3) Therefore input length 
equals 40 bytes. 
4) Possible block size: 64 bits. 



File #2 – Candidate ciphers 
• DES. 
• 2TDES. 
• 3TDES. 
• FEAL. 
• IDEA. 
• SAFER. 
• RC5. 
• LOKI. 
• Blowfish. 



File #2 – String search  



File #2 – Narrowing the options 
• LbCipher is a library for Delphi. 
• It implements the following algorithms from our list: 

– Blowfish (ECB, CBC). 
– DES (ECB, CBC). 
– 2TDES (ECB, CBC). 
– 3TDES (ECB, CBC).  



File #2 – Starting with DES 
• DES is a 64-bit block cipher. 
• The cipher employs a 64-bit key of which only 56 bits are 

effective. 
• Based on a Feistel network. 
• It is possible to search the entire key space using special 

purpose hardware1, which was first built in 1998. 



File #2 – Inside DES (1) 

Source: [2] HAC. 

Figure: DES 
rounds. 



File #2 – Inside DES (2)  

Source: [2] HAC. 

Figure: DES initial permutation and inverse. 



File #2 – Inside DES (3) 

Source: [2] HAC. 

Figure: DES round function expansion E and permutation P. 



File #2 – Inside DES (4) 

Source: [2] HAC. 

Figure: DES key schedule bit selections. 



File #2 – From LbCipher   
procedure InitEncryptDES(const Key : TKey64;  
               var Context : TDESContext; Encrypt : Boolean);  
const PC1 : array [0..55] of Byte = (56, 48, 40, 32, 24, 16, 8, 0, 
57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 
43, 35, 62, 54, 46, 38, 30, 22, 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 
60, 52, 44, 36, 28, 20, 12, 4, 27, 19, 11, 3);  
PC2 : array [0..47] of Byte = (13, 16, 10, 23, 0, 4, 2, 27, 14, 5, 20, 
9, 22, 18, 11, 3, 25, 7, 15, 6, 26, 19, 12, 1, 40, 51, 30, 36, 46, 54, 
29, 39, 50, 44, 32, 47, 43, 48, 38, 55, 33, 52, 45, 41, 49, 35, 28, 
31);  



File #2 – Next steps 
• Load the malware in OllyDbg. 
• Search for PC1 and use it to locate the address of 

InitEncryptDES, if present. 
• Set a breakpoint in that address. 
• Run the malware. 
• Extract the key from the first parameter. 



File #2 – Finding PC1 (1) 



File #2 – Finding PC1 (2) 



File #2 – References 

To find references to PC1, we 
need to select its first byte 
(0x38) and press Ctrl+R. 



File #2 - Beginning of the function 
Beginning of 

procedure 
InitEncryptDES 



File #2 – Running the malware 



File #2 – Which parameter? 
• Remember the procedure signature is as follows: 
  procedure InitEncryptDES( 
     const Key : TKey64;  
     var Context : TDESContext;  
     Encrypt : Boolean); 
• TKey64 definition: 
  TKey64  = array [0..7] of Byte; 
• A TKey64 value can not be stored by a single register in a 

32-bit architecture. 



File #2 – Calling convention 
• Delphi’s calling convention (left-to-right): 

– 1st parameter: EAX. 
– 2nd parameter: EDX. 
– 3rd parameter: ECX. 
– Remaining parameters: stack. 

 



File #2 – Key address 



File #2 – Key value 



File #2 – Description of cipher 
• Encryption algorithm: DES. 
• Mode of operation: ECB. 
• Key: K = 0xc24fa010744eb153 



Alternative for finding keys 
• A properly generated key is entropic. 
• Information, on the other hand, is structured. 
• Based on those facts, in 1999, Shamir and Someren3 

proposed a way of finding stored keys. 
• The basic idea is to traverse memory and identify the 

region with more entropy. 
• One way of doing that is to set a window size and count 

the number of different elements on each window. 



File #3 – Sample  
50E96823#0851CDA207333E24 1.0.6 St - P: 6 R: 11 
CFT:1.0.2 
PA: 3 
C3@158BF7627CD2750FF53D7288C863F7C7041221CD8E77B6A7F7833815075091A23EB3ADA
2352ADFE9514952DE6DF8B619D41E51DFB7C0196A104F994920E2434716699DEF0DA48E624
CEC0953F7BE159E0B43F3862C4A8D8FE1476F7939F72F99A049CAC2DC1DE0E6BB91066FF3E9
20283A373E8B94DF3D39F06FCB6A29B9E5DCF20A0D02DE8F288F5C2737D1D64E1E25AA51A
42C0AAE3ABFE354EBCE781342A6D84413391F4038EDB213AA87870D25FC06DD05DBF3EEB6
84665A7E20C080F196BA42D96CFE0FA08FF64FF9B3C08CA3765768EDCBEDF620562ADB442C
6A1191A1A137E50C7F75C629AEB702F09F81107 
PF: 3 
50E96832#K@881A6DC9E4470F 
50E96837#K@06BB 
50E9683C#K@3FE759EE 
 



File #3 – Description of cipher 
• Alphabet of definition: A = {0, 1, 2, 3, …, 255} 
• Plain text: M = m0m1m2…mt-1, mi ϵ A 
• Cipher text: C = c0c1c2…ct-1, ci ϵ A 

• Key: K = k0k1k2k3k4k5k6k7k8k9k10 
• Encryption function: ci = mi + k(i mod 11) mod 256 
• Decryption function: mi = ci – k(i mod 11) mod 256 
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Thank you for listening! 

Questions? 
 

Nelson Uto 
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