


Cryptanalysis of malware encrypted 
output files 
Nelson Uto 
CPqD 



Agenda 
• Introduction. 
• Cryptanalysis of File #1. 
• Cryptanalysis of File #2. 
• Cryptanalysis of File #3. 



Introduction 
• CPqD was hired by a big Brazilian company to find out 

which information had been stolen by three different 
malwares, that infected its environment. 

• Each one of them stored information in encrypted form 
using different mechanisms. 

• We did only have access to the encrypted files and the 
malware binaries, meaning we could not use the special 
purpose hardware targeted by them. 

• Due to the sensitivity of the stolen data and signed NDA, 
this talk will not use the real information we retrieved from 
those files. 



Covered topics 
• Detection of weak cryptosystems. 
• Cryptanalysis of classical algorithms. 
• Block ciphers. 
• DES. 
• Modes of operation. 
• Searching key in malware binary or in memory. 
• Worst scenario. 

 



File #1 – Sample 



File #1 – Histogram 



File #1 – Important facts 
• File#1 is pretty redundant. 

– This means a weak cryptosystem was used. 
• The distance between occurrences of the string 

“robin@hoo” is always multiple of its length. 
• Most of the bytes has values between 80 and 180. 

 



File #1 – Hypothesis 
• Hypothesis #1: a constant number is added to each byte 

modulo 256 and a given string is repeated several times in 
the plain text. 
– Not likely, but it should be tested. 
– How? 

• Hypothesis #2: a Vigenère cipher over an alphabet of 256 
elements and period equals 9 was used.  
– Candidate key: robin@hoo 



File #1 – First attempt 



File #1 – Correction 



File #1 – Description of cipher 
• Alphabet of definition: A = {0, 1, 2, 3, …, 255} 
• Plain text: M = m0m1m2…mt-1, mi ϵ A 
• Cipher text: C = c0c1c2…ct-1, ci ϵ A 

• Key: K = k0k1k2k3k4k5k6k7k8  
                = 0x52 4f 42 49 4e 20 48 4f 4f 
• Encryption function: ci = mi + k(i mod 9) mod 256 
• Decryption function: mi = ci – k(i mod 9) mod 256 

 



File #2 – Sample 



File #2 – Base64 decoded 



File #2 – Redundancy check 



File #2 – Base64 review 

0 0 0 0 

Encoded 1 Encoded 2 = = 

octet 

0 0 

Encoded 1 Encoded 2 Encoded 3 = 

1st octet 2nd octet 

Added bits 

Added bits 

Padding 

Padding 



File #2 – Block size? 

1) Length = 56 Base64 chars. 
2) Ends with “==”. 
3) Therefore input length 
equals 40 bytes. 
4) Possible block size: 64 bits. 



File #2 – Candidate ciphers 
• DES. 
• 2TDES. 
• 3TDES. 
• FEAL. 
• IDEA. 
• SAFER. 
• RC5. 
• LOKI. 
• Blowfish. 



File #2 – String search  



File #2 – Narrowing the options 
• LbCipher is a library for Delphi. 
• It implements the following algorithms from our list: 

– Blowfish (ECB, CBC). 
– DES (ECB, CBC). 
– 2TDES (ECB, CBC). 
– 3TDES (ECB, CBC).  



File #2 – Starting with DES 
• DES is a 64-bit block cipher. 
• The cipher employs a 64-bit key of which only 56 bits are 

effective. 
• Based on a Feistel network. 
• It is possible to search the entire key space using special 

purpose hardware1, which was first built in 1998. 



File #2 – Inside DES (1) 

Source: [2] HAC. 

Figure: DES 
rounds. 



File #2 – Inside DES (2)  

Source: [2] HAC. 

Figure: DES initial permutation and inverse. 



File #2 – Inside DES (3) 

Source: [2] HAC. 

Figure: DES round function expansion E and permutation P. 



File #2 – Inside DES (4) 

Source: [2] HAC. 

Figure: DES key schedule bit selections. 



File #2 – From LbCipher   
procedure InitEncryptDES(const Key : TKey64;  
               var Context : TDESContext; Encrypt : Boolean);  
const PC1 : array [0..55] of Byte = (56, 48, 40, 32, 24, 16, 8, 0, 
57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 
43, 35, 62, 54, 46, 38, 30, 22, 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 
60, 52, 44, 36, 28, 20, 12, 4, 27, 19, 11, 3);  
PC2 : array [0..47] of Byte = (13, 16, 10, 23, 0, 4, 2, 27, 14, 5, 20, 
9, 22, 18, 11, 3, 25, 7, 15, 6, 26, 19, 12, 1, 40, 51, 30, 36, 46, 54, 
29, 39, 50, 44, 32, 47, 43, 48, 38, 55, 33, 52, 45, 41, 49, 35, 28, 
31);  



File #2 – Next steps 
• Load the malware in OllyDbg. 
• Search for PC1 and use it to locate the address of 

InitEncryptDES, if present. 
• Set a breakpoint in that address. 
• Run the malware. 
• Extract the key from the first parameter. 



File #2 – Finding PC1 (1) 



File #2 – Finding PC1 (2) 



File #2 – References 

To find references to PC1, we 
need to select its first byte 
(0x38) and press Ctrl+R. 



File #2 - Beginning of the function 
Beginning of 

procedure 
InitEncryptDES 



File #2 – Running the malware 



File #2 – Which parameter? 
• Remember the procedure signature is as follows: 
  procedure InitEncryptDES( 
     const Key : TKey64;  
     var Context : TDESContext;  
     Encrypt : Boolean); 
• TKey64 definition: 
  TKey64  = array [0..7] of Byte; 
• A TKey64 value can not be stored by a single register in a 

32-bit architecture. 



File #2 – Calling convention 
• Delphi’s calling convention (left-to-right): 

– 1st parameter: EAX. 
– 2nd parameter: EDX. 
– 3rd parameter: ECX. 
– Remaining parameters: stack. 

 



File #2 – Key address 



File #2 – Key value 



File #2 – Description of cipher 
• Encryption algorithm: DES. 
• Mode of operation: ECB. 
• Key: K = 0xc24fa010744eb153 



Alternative for finding keys 
• A properly generated key is entropic. 
• Information, on the other hand, is structured. 
• Based on those facts, in 1999, Shamir and Someren3 

proposed a way of finding stored keys. 
• The basic idea is to traverse memory and identify the 

region with more entropy. 
• One way of doing that is to set a window size and count 

the number of different elements on each window. 



File #3 – Sample  
50E96823#0851CDA207333E24 1.0.6 St - P: 6 R: 11 
CFT:1.0.2 
PA: 3 
C3@158BF7627CD2750FF53D7288C863F7C7041221CD8E77B6A7F7833815075091A23EB3ADA
2352ADFE9514952DE6DF8B619D41E51DFB7C0196A104F994920E2434716699DEF0DA48E624
CEC0953F7BE159E0B43F3862C4A8D8FE1476F7939F72F99A049CAC2DC1DE0E6BB91066FF3E9
20283A373E8B94DF3D39F06FCB6A29B9E5DCF20A0D02DE8F288F5C2737D1D64E1E25AA51A
42C0AAE3ABFE354EBCE781342A6D84413391F4038EDB213AA87870D25FC06DD05DBF3EEB6
84665A7E20C080F196BA42D96CFE0FA08FF64FF9B3C08CA3765768EDCBEDF620562ADB442C
6A1191A1A137E50C7F75C629AEB702F09F81107 
PF: 3 
50E96832#K@881A6DC9E4470F 
50E96837#K@06BB 
50E9683C#K@3FE759EE 
 



File #3 – Description of cipher 
• Alphabet of definition: A = {0, 1, 2, 3, …, 255} 
• Plain text: M = m0m1m2…mt-1, mi ϵ A 
• Cipher text: C = c0c1c2…ct-1, ci ϵ A 

• Key: K = k0k1k2k3k4k5k6k7k8k9k10 
• Encryption function: ci = mi + k(i mod 11) mod 256 
• Decryption function: mi = ci – k(i mod 11) mod 256 

 
 



References 
• [1] Electronic Frontier Foundation, Cracking Des: Secrets of 

Encryption Research, Wiretap Politics & Chip Design, O’Reilly 
Media, 1998. 

• [2] Menezes, A., van Oorschot, P, and Vanstone, S., 
Handbook of Applied Cryptography, CRC Press, 2001. 

• [3] Shamir, A. and van Someren,N., Playing “Hide and Seek” 
with Stored Keys, in FC’99 Proc. of the 3rd Intl. Conference 
on Financial Cryptography, 1999. 



 
Thank you for listening! 

Questions? 
 

Nelson Uto 
 


	Slide Number 1
	Cryptanalysis of malware encrypted output files
	Agenda
	Introduction
	Covered topics
	File #1 – Sample
	File #1 – Histogram
	File #1 – Important facts
	File #1 – Hypothesis
	File #1 – First attempt
	File #1 – Correction
	File #1 – Description of cipher
	File #2 – Sample
	File #2 – Base64 decoded
	File #2 – Redundancy check
	File #2 – Base64 review
	File #2 – Block size?
	File #2 – Candidate ciphers
	File #2 – String search 
	File #2 – Narrowing the options
	File #2 – Starting with DES
	File #2 – Inside DES (1)
	File #2 – Inside DES (2) 
	File #2 – Inside DES (3)
	File #2 – Inside DES (4)
	File #2 – From LbCipher  
	File #2 – Next steps
	File #2 – Finding PC1 (1)
	File #2 – Finding PC1 (2)
	File #2 – References
	File #2 - Beginning of the function
	File #2 – Running the malware
	File #2 – Which parameter?
	File #2 – Calling convention
	File #2 – Key address
	File #2 – Key value
	File #2 – Description of cipher
	Alternative for finding keys
	File #3 – Sample 
	File #3 – Description of cipher
	References
	Slide Number 42

