

Boston Park Plaza Hotel | June 22-27, 2014

Credential Honeytoken for Tracking Web-based Attack Cycle

Mitsuaki Akiyama (akiama.mitsuaki@lab.ntt.co.jp) NTT Secure Platform Laboratories / NTT-CERT

Copyright©2014 NTT corp. All Rights Reserved

Who I am

- Mitsuaki Akiyama
- Security Researcher (Ph.D)
 - Research interests: honeypots, malware analysis, exploit analysis
- Developer of various types of honeypots
- NTT Secure Platform Laboratories / NTT-CERT

- Background: web-based attack cycle
- Honeytoken
- Preliminary investigation: information leaking malware
- Proposed system
- Experimental results
- Summary and conclusion

- Background: web-based attack cycle
- Honeytoken
- Preliminary investigation: information leaking malware
- Proposed system
- Experimental results
- Summary and conclusion

Web-based attack cycle

New Mass Web Attack Makes 40,000 Victims

Web-based attack cycle detail

- Background: web-based attack cycle
- Honeytoken
- Preliminary investigation: information leaking malware
- Proposed system
- Experimental results
- Summary and conclusion

What is a Honeytoken?

- Honeypot: decoy system resource
- Honeytoken: not computer system; resource-centric honeypot

• Studies on credential honeytokens

- Phishing Phisher [ICIMP2007], Anti-phishing framework [eCrime2009], BotSwindler [RAID2010]

Our approach

- Chain each attack phase on web-based attack cycle
 - leak honeytokens
 - monitor usages of honeytokens
 - analyze drive-by downloads on compromised websites
- integrate each method into our system for <u>automatic</u> <u>observation</u>

- Background: web-based attack cycle
- Honeytoken
- Preliminary investigation: information leaking malware
- Proposed system
- Experimental results
- Summary and conclusion

Client applications targeted for stealing credentials

- Analyzing malware on sandbox
 - -Malware executables from the web
- •Various kinds of malware read configuration files of applications without user's permission
 - FTP client: 24 kinds
 - IM client: 3 kinds
 - Mail client: 4 kinds
 - Web authoring tool : 2 kinds
 - Web browser: 6 kinds
 - Other: 14 kinds

e.g., C: ¥ Program Files ¥ BPFTP ¥ Default.bps

- Background: web-based attack cycle
- Honeytoken
- Preliminary investigation: information leaking malware
- Proposed system
- Experimental result
- Summary and conclusion

Observation system and procedure

Step 1. Collect malware

- Client honeypot crawls seed URLs and collects malware
 - public blacklists and general websites
 - drive-by download and click-download executables

Step 3. Observe compromising

- WCMS honeypot deploys bogus web content (HTML, JS, CGI)
 - CMS packages and original files used as bait
- Expected that web content will be compromised by an adversary
 - e.g., injecting redirect code leading to exploit sites

Step 4. Inspect compromised web content

- Background: web-based attack cycle
- Honeytoken
- Preliminary investigation: information leaking malware
- Proposed system
- Experimental results
- Summary and conclusion

Experimental setup and brief result

- Experimental period
 - Mar. 2012 to Feb. 2013 (about one year)
- Seed URLs
 - Blacklist URLs (*malwaredomainlist.com*) and general public websites
 - Compromised web content on WCMS honeypot was also used for seed.
 - Crawling repeatedly at regular intervals (2 or 3 days)
- Collected malware
 - Total 5,474
- Brief result
 - Successful observation of web-based attack cycle for over a year
 - 4.1% of malware had a part in the web-based attack cycle.
 - 900 malicious FQDNs, 10,420 malicious IP addresses; very small overlap between them and well-known blacklists

Basic control structure on adversary side

Graph structure of adversary groups

Lifespans and activities of adversary groups

Copyright©2014 NTT corp. All Rights Reserved.

Compromised web content

Redirection to exploit sites

- Injected redirect codes in compromised web content point to malicious websites (exploit sites).
- Redirect destinations (malicious websites) are frequently changed.
 - By inspecting them, our system can **discover new, unknown malicious websites without large-scale crawling**.

Exploit kit on exploit sites

- Well-known exploit kits observed by our system
 - identified by manual analysis
 - Heuristics to identify
 - URL characteristics (path, fine name, URL parameter), redirect graph, content types, etc.

Exploit kit	# of IPs	# of FQDNs
Blackhole	24	127
Redkit	97	82
Phoenix	29	43
Incognito	18	32
Neosploit	19	7

Multi-redirection via Traffic Direction System

- Traffic Direction System (TDS)
 - used for cyber criminal activities (drive-by infection, drug trading, etc.)
 - controls redirect destinations
 - redirects a crawler to popular websites in order to **conceal exploit sites**

Evaluation: Blacklist overlap comparison

 Overlap between our obtained malicious entities and malicious IP addresses/FQDNs on public blacklists

Our obtained malicious entities

Type of information	# of IPs	# of FQDNs
Adversary IP (accessing FTP)	722	(n/a)
TDS_A	9,476	84
TDS_B	33	525
Blackhole	24	127
Redkit	97	82
Phoenix	29	43
Incognito	18	32
Neosploit	19	7

26th annua

Public blacklists' entities (registered in the same period of our experiment)

Blacklists	# of IPs	# of FQDNs
MalwareDomainList (MDL)	3,489	3,741
MalwarePatrol (MP)	5,457	6,425
UrlBlackList (UBL)	208,801	111,945
MalwareDomain- BlackList (MDB)	3,009	13,212
ZeusTracker (ZT)	1,672	1,971
CleanMX-viruses (CMX)	65,456	(n/a)

ight©2014 NTT corp. All Rights Reserved.

IP address overlap

Type of info.	Collected	∩MD L	∩M ₽	∩UB L	∩MD B	∩ZT	∩CMX
Adversary IP (accessing FTP)	722	5	2	10	3	1	30
TDS_A	9,476	2	11	55	1	2	136
TDS_B	33	7	0	10	3	0	6
Blackhole	24	15	1	3	5	0	12
Redkit	97	69	3	15	8	2	16
Phoenix	29	3	0	13	1	2	8
Incognito	18	7	1	1	1	1	0
Neosploit	19	7	0	5	1	2	8
Total	10,420	113	18	102	21	8	209
		۱ <u> </u>	471 / 10,420 = 4.5% overlap				

FQDN overlap

	Collected	∩MD L	∩M P	∩UB L	∩MD B	∩ZT	∩CMX
Adversary IP (accessing FTP)	(n/a)	(n/a)	(n/a)	(n/a)	(n/a)	(n/a)	(n/a)
TDS_A	84	0	0	31	5	0	(n/a)
TDS_B	525	3	0	19	11	0	(n/a)
Blackhole	127	3	0	0	0	0	(n/a)
Redkit	82	34	0	13	9	0	(n/a)
Phoenix	43	1	0	11	0	0	(n/a)
Incognito	32	2	0	5	5	0	(n/a)
Neosploit	7	1	0	11	0	0	(n/a)
Total	900	44	0	81	30	0	(n/a)
OSTON 26th an	nual FIRST confe			γ 15	5 / 900 =	17%	overlap

Evaluation: Speed of malicious domain discovery Discovery latency

Almost all domains were discovered within 60 days (2 months) of their creation.

Copyright©2014 NTT corp. All Rights Reserved

Our discovery method is obviously faster than other blacklists.

- Background: web-based attack cycle
- Honeytoken
- Preliminary investigation: information leaking malware
- Proposed system
- Experimental results
- Summary and conclusion

Summary and conclusion

- Observation system based on credential honeytoken successfully tracks complicated web-based attack cycle
- Effectiveness
 - Instantaneous discovery of malicious entities without requiring large-scale crawling
 - Small overlap between obtained malicious entities and those registered in famous public blacklists
- Enhanced observation space
 - Observation space is essentially different from conventional blacklisting approaches.

