Transparency and Information Sharing in Digital Forensics

Johan Berggren - Google
Incident Response / Forensics
First, Who am I?

- Johan Berggren
- Incident Response / Forensics at Google
- Background from R&E networks
- Open source enthusiast
The plot for today

Imaginary incident: You need to triage and investigate 42 computers (laptops, servers, Windows, Linux, MacOSX) across 16 countries with a team of 8 investigators working in multiple timezones. Oh, and in one of the Windows boxes we suspect that there can be evidence hiding in a VSS volume. And we also need memory dumps.

This is a complex case. We need good tooling, effective information sharing and solid collaboration in order to solve this quickly.
Collection

- Does my tooling support this?
- Do I need a dongle in every remote location?
- Does the license cover this?
- 16 countries you say.. Maybe call in support?
- Windows, Mac and Linux..?
- What about memory?
- I really need this data as soon as possible..
After some (long) time, involving 20+ people I have managed to collect some artifacts from some of the Windows boxes. I also managed to get full disk images of a couple of computers (Windows, Macs and Linux). None of the laptops though, we have to wait until they come back to the office..
Processing

- My tool can extract timestamp information!
- But only for some file formats, and only for Windows..
- No support for encrypted (BitLocker) Windows disk images. No VSS support.
- I need an extra license for Mac support.
- No automation, so we have to do it by hand. This is gonna take time..
- We only have 2 licenses for 2 workstations..
Analyzing

- Ok, we got some data processed. Let’s start working!
- But we only have 2 workstations with our software. One in each timezone.. and we have 8 analysts..
- Ok, one will do analysis and one will keep track of notes. Then we rotate..
- How can we collaborate and share information/knowledge about the case within the team?
Result

- We got some data to analyze, but it took some time and effort to coordinate.
- No memory dumps
- We could only process the Windows artifacts.
- It took a long time because we had to do it by hand.
- We didn’t really utilize all analysts.
- Information sharing within the team was not great.
My ideal tooling

● The suite versus the toolbox e.g. SIFT
● Does not get in the way of the analysis!
● Cross platform support
● Supports one-off scripts and automation.
 ○ Shouldn't be tied to a vendor's product
 ○ No dongle!
● Easily adaptable and extendable.
● Support collaboration.
● Be transparent all the way.
Let’s try the toolbox approach

Same imaginary incident, different approach.
GRR Rapid Response for collection and triage

- Open source Incident Response Framework
- Fully fledged response capabilities handling most incident response and forensics tasks
- Remote Live Forensics
- Support for Linux, Mac OS X and Windows clients
- Secure communication infrastructure designed for Internet deployment (HTTP)
- Scalable back-end to handle very large deployments
Why GRR?

- *Tell me if this machine is compromised*
 - (while you're at it, check 20000 of them)
- *Joe saw something weird, check his machine*
 - (p.s. Joe is on holiday in Sweden and on 3G)
- *Forensically acquire 42 machines for analysis*
 - (p.s. they're in 5 continents and only 2 are Windows)
GRR Flows

- To run an analysis on the client, we run flows
 - e.g. GetFile, ListDirectory, ListProcesses, GetMemory
- Requests and Responses
- State machine
- Do not take up server resources while waiting for the client
- Scales well. The individual states in the flow can be made by different machines
GRR Hunts

- Run flows on many clients
 - Or subset of the fleet, e.g. only Windows machines
- Find malicious code and abnormal behavior amongst the entire fleet of clients
- Fast triage
 - Look for Indicators of Compromise
<table>
<thead>
<tr>
<th>State</th>
<th>Path</th>
<th>Flow Name</th>
<th>Creation Time</th>
<th>Last Active</th>
<th>Creator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W:9E0F1710</td>
<td>GrepMemory</td>
<td>2013-11-03 01:16:08</td>
<td>2013-11-03 01:16:31</td>
<td>admin</td>
</tr>
<tr>
<td>✔</td>
<td>W:D3125859</td>
<td>LoadMemoryDriver</td>
<td>2013-11-03 01:16:08</td>
<td>2013-11-03 01:16:31</td>
<td>admin</td>
</tr>
<tr>
<td>✔</td>
<td>W:D3125859</td>
<td>LoadMemoryDriver</td>
<td>2013-11-03 01:16:08</td>
<td>2013-11-03 01:16:31</td>
<td>admin</td>
</tr>
</tbody>
</table>
Plaso for processing

- Open source timelining tool.
- Modular and flexible
- Targeted analysis or the kitchen sink approach
- Easy to automate and script
Plaso architecture

- **Preprocessing**
 - Collect information about the image.
 - e.g. timezone, hostname, users etc..
- **Collection**
 - Find all the files to process
- **Extraction**
 - Parse the files and store all the events
 - Community effort
- **Storage & Output**
Information sharing

● Different shapes and forms
 ○ Within team
 ○ Within organisation
 ○ Between organisations
 ○ Between tools

● Let our tools work for us
 ○ Encourage information sharing and collaboration
 ○ Make information sharing part of the design
Timesketch

- Open source collaborative forensic timeline analysis
- Web based tool to analyse timeline data
- Modelled around collaboration and information sharing
 - Users can work simultaneously on the same data
 - Annotate
 - Share findings
Timesketch architecture

- **WebUI**
 - Focuses on collaboration
 - You share information while you are analyzing
- **HTTP RESTful API**
 - Add authn and authz
- **Backend storage and search**
 - Fast
 - Search across indexes
Sketch

Screenshot..
Multiple timelines

Screenshot..
Annotations

Screenshot..
Share views

Screenshot..
Result

- We were able to quickly triage.
- We collected the data we needed fast.
- We processed all the data.
- Most of the collection and processing was automated.
- All analysts worked in parallel and shared their findings with timesketch.
Information sharing, moving forward

- Even more central in the tools design
- Stories
 - Mix data with narrative
 - Let the data explain the story
 - Build context around events
- Knowledge sharing
 - forensicwiki.org
 - Artifacts to glue tools together
Artifacts

- Artifacts (examples)
 - Windows Application Event Log
 - A (Windows Registry) Run Key
 - A process
 - A mutex
 - Browser history

- Artifact definitions
 - Share artifact knowledge with the community
 - Integrate with tools
 - Data driven
Artifacts in our toolbox

- Collection based on artifacts (e.g. GRR)
- Extraction and processing with artifacts (e.g. Plaso)
- Overlay your data with artifact descriptions to aid in analysis (e.g. Timesketch)
What about transparency?

- Open source
 - Verify the result from our tools
 - Understand why the data is presented to you
 - Add transparency to the process
 - Keep your team motivated
 - Developing open source software can be a motivator!
 - “Free” education.
Conclusion

- Incident Response at scale is hard.
- Relying on a single monolithic product can sometimes be a limiting factor.
- Open source forensics have come a long way.
- Open source drives motivation and innovation.
- Open source adds transparency.
- Collaboration and information sharing should be part of the tools design.
Questions?
References

swiss army knife (Creative Commons)

Plaso logo (Used with permission)
https://lh6.googleusercontent.com/Imix4Wnn8v__wXcv4vXdXwzOzlFuiV6i5uVvUm2_8F6FMY7Qjze-qcHLiugFjwsOdNn9s5aVrk94diS2kRumQPPPZZHLzNq1VdSk8vSuoHrqPwCot1RoifA6UMU