Foreword

• All views represented in this presentation reflect my own and do not represent those of my employer.
Agenda

• Introduction
• Sharing a Common Frame of Reference
• CTI Support and Stakeholders
• CTI Analyst Core Competencies
• Parting Thoughts
• Q&A
whoami

Microsoft Windows [Version 10.0.19043.1889]
(c) Microsoft Corporation. All rights reserved.
C:\Users\John.Doyl> net user John.Doyl

- SANS. FOR578 Cyber Threat Intelligence Instructor.
- Mandiant. Principal Intelligence Enablement Consultant.
- Mandiant. Principal Strategic and Incident Response Consultant.
- Mandiant. Principal Advanced Intelligence Integrator.
- Central Intelligence Agency (CIA). Senior Cyber Threat Analyst.
- George Mason University. Adjunct Cyber Security Professor.
- Certifications: CISSP, GCTI, GCFA, GDAT, GCFE, GNFA, GPEN.
Sharing a Common Frame of Reference

• Differential equations and race conditions are real in cyber security
• Defenders and attackers operate at various speeds to complete objectives
• Intelligence speeds up how quickly we can complete the defender’s OODA loop
• But first, we need a common operating picture of what everyone’s role is and how we contribute
Sharing a Common Frame of Reference

• Collaboration is most effective when we understand what each other do

• Almost certainly are there unspoken expectations on both sides, never voiced, about job role responsibility

NICE Cybersecurity Workforce Framework

The NICE Framework is comprised of the following components:

• Categories (7) – A high-level grouping of common cybersecurity functions

• Specialty Areas (33) – Distinct areas of cybersecurity work

• Work Roles (52) – The most detailed groupings of cybersecurity work comprised of specific knowledge, skills, and abilities (KSAs) required to perform tasks in a Work Role

The table and diagram in the image provide examples of these components, including:

- Analyze
- Collect and Operate
- Investigate
- Operate and Maintain
- Oversee and Govern
- Protect and Defend
- Securely Provision
CTI Support and Stakeholders

A CTI Analyst provides timely, relevant, actionable insights on threat actors, capabilities, motivations, and the threat landscape to inform risk exposure decisions and cyber defense actions.
CTI Support and Stakeholders

<table>
<thead>
<tr>
<th>Audience Type:</th>
<th>Strategic</th>
<th>Operational</th>
<th>Tactical</th>
</tr>
</thead>
</table>
| **Customer Roles:** | • Chief Information Security
• Security Management
• Risk Management and Analysts | • Incident Response Team
• Vulnerability and Patch Management Team
• Forensics Team
• Red Team
• Purple Team | • Security Operations Center
• Network Operations Center |
| **Customer Tasks:** | • Allocate resources
• Communicate with executives | • Determine attack vectors
• Patch systems
• Remediate
• Hunt for breaches | • Push indicators to security tools |
| **Problems They Face:** | • No clear investment priorities
• Executives are not technical | • Event reconstruction tedious
• Difficult to identify damage
• Difficult to prioritize patches | • False positives
• Alert overload |
| **Value-add from CTI:** | • Demystify threats
• Prioritize based on business risk | • Add context to reconstruction
• Prioritize patches
• Focus in on potential targets | • Validate and prioritize indicators
• Prioritize alerts |
CTI Support and Stakeholders

1 role to rule them all...

Strategic threat analyst
Cyber espionage analyst
Hunt analyst

Technical threat analyst
Threat researcher
Vulnerability intelligence analyst

Threat context analyst
Intrusion analyst
Intelligence engineer

eCrime analyst
Threat hunter
Detection engineer
CTI Support and Stakeholders

At least 3 modalities exist:

Private Sector - Internal Support
- CTI Team
 - Red Team
 - Purple Team
 - Detections
 - Senior Leadership
 - Risk
 - Incident Response

Government - CERTs
- Government - CTI Team
 - ISAC 1
 - Vendors
 - Internal Government
 - Public Website
 - Sharing Groups
 - ISAC 2

Government - Military/Intelligence
- Government - CTI Team
 - Internal SOC
 - Public websites
 - Vendors
 - Foreign Partners
 - National-level Policymakers
 - Internal Policymakers
CTI Support and Stakeholders

- Intelligence requirements will dictate coverage needs. How is the CTI team broken out?
- Does the coverage structure align with mission coverage?
- Is there one or more designated team members tasked with managing the relationship across individual stakeholders?
CTI Support and Stakeholders

Intelligence Requirements Framework

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Status</th>
<th>Priority Level</th>
<th>Last Updated</th>
<th>Primary Stakeholder(s)</th>
<th>Reporting Intent</th>
<th>Intel Product Output(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The CTI Team will monitor for cyber threat groups attempting to compromise <organization> or its industry peers</td>
<td>Active</td>
<td>1</td>
<td>June 2022</td>
<td>Risk Management Senior Leadership CIRT</td>
<td>Situational Awareness</td>
<td>Monthly Threat Report</td>
</tr>
<tr>
<td>The CTI Team will capture Tactics, Techniques, and Procedures (TTPs) for groups targeting industry peers</td>
<td>Active</td>
<td>1</td>
<td>June 2022</td>
<td>CIRT SOC Purple Team</td>
<td>Situational Awareness Hunting</td>
<td>Adversary Playbook Threat Hunting Guide</td>
</tr>
<tr>
<td>The CTI Team will prioritize cyber threat groups and trends based on understanding critical business systems, individuals, and client data</td>
<td>Active</td>
<td>2</td>
<td>June 2022</td>
<td>Risk Management Senior Leadership</td>
<td>Risk Impact Assessments</td>
<td>Annual Cyber Threat Trends Report</td>
</tr>
<tr>
<td>The CTI team will monitor for newly discovered vulnerabilities and adversary groups exploiting them</td>
<td>Inactive</td>
<td>3</td>
<td>Jan 2022</td>
<td>Vulnerability Management</td>
<td>Situational awareness Patch Prioritization</td>
<td>Vulnerability Dashboard</td>
</tr>
</tbody>
</table>
CTI Support and Stakeholders

Strategic Analyst || Threat Analyst

- Adapts communication style to resonate with senior personnel
- Takes a systems engineering approach, examining several related threat, trend, and tech issues
- Understands internal culture, business direction, and existing tech stack, risk exposure, and cyber defense efforts
- Identifies signposts of change and can provide indicators and warning
- Can identify the roles and responsibilities within a cyber program
- Able to correlate geopolitical objectives
- Can align motivations with military or intelligence service mission mandate
- ...

<table>
<thead>
<tr>
<th>Audience Type:</th>
<th>Strategic</th>
</tr>
</thead>
</table>
| Customer Roles: | • Chief Information Security
• Security Management
• Risk Management and Analysts |
| Customer Tasks: | • Allocate resources
• Communicate with executives |
| Problems They Face: | • No clear investment priorities
• Executives are not technical |
| Value-add from CTI: | • Demystify threats
• Prioritize based on business risk |
CTI Support and Stakeholders

For nations, cyber is an asymmetric tool used as a form of soft power to augment existing tools of statecraft. A subset of these motivations exists for criminal elements.

Espionage

- Political
 - Provide situational awareness of organizational decisions and plans
 - Inform course of action in bi- or multi-lateral negotiations
 - Identify potentially compromising information to use as a bartering chip
- Military
 - Understand capabilities, plans, decision calculus, and key stakeholders
- Economic
 - Bolster domestic competitiveness
 - Fund regime coffers

Attack

- Disrupt or degrade the availability of information systems and network access
- Destroy systems storing information
- Hide tracks
- Cause embarrassment
- Extortion or monetization
- Misdirection or false flag
CTI Support and Stakeholders

<table>
<thead>
<tr>
<th>VULNERABILITY RESEARCHER</th>
<th>SOFTWARE ENGINEER</th>
<th>INFRASTRUCTURE ADMINISTRATOR</th>
<th>ANALYST</th>
<th>CYBER OPERATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finds vulnerabilities in software, determines if they can be exploited</td>
<td>Create operational tools by developing or integrating exploits</td>
<td>Purchase operational infrastructure such as VPS and domains</td>
<td>Examine network architecture, traffic, and survey compromised systems' reconnaissance data to inform future actions</td>
<td>Scans systems, creates spearphishing lures</td>
</tr>
<tr>
<td>Creates proof of concept exploit code</td>
<td>Devise newly created or modify existing open source tools</td>
<td>Configure network nodes for remote access and data collection</td>
<td></td>
<td>Profiles systems, collects data of intelligence value</td>
</tr>
<tr>
<td>Prioritizes development work based on intelligence requirements</td>
<td></td>
<td></td>
<td></td>
<td>Creates custom scripts</td>
</tr>
</tbody>
</table>

Cyber operations are a team sport
CTI Support and Stakeholders

Talk computer security to me
CTI Support and Stakeholders

The State of Ransomware in Financial Services 2022

GLOBAL LANDSCAPE ON COVID-19 CYBERTHREAT

Oil and Gas Cybersecurity: Trends & Response to Survey
CTI Support and Stakeholders

<table>
<thead>
<tr>
<th>Audience Type:</th>
<th>Operational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer Roles:</td>
<td></td>
</tr>
<tr>
<td>• Incident Response Team</td>
<td></td>
</tr>
<tr>
<td>• Vulnerability and Patch Management Team</td>
<td></td>
</tr>
<tr>
<td>• Forensics Team</td>
<td></td>
</tr>
<tr>
<td>• Red Team</td>
<td></td>
</tr>
<tr>
<td>• Purple Team</td>
<td></td>
</tr>
<tr>
<td>Customer Tasks:</td>
<td></td>
</tr>
<tr>
<td>• Determine attack vectors</td>
<td></td>
</tr>
<tr>
<td>• Patch systems</td>
<td></td>
</tr>
<tr>
<td>• RemEDIATE</td>
<td></td>
</tr>
<tr>
<td>• Hunt for breaches</td>
<td></td>
</tr>
<tr>
<td>Problems They Face:</td>
<td></td>
</tr>
<tr>
<td>• Event reconstruction tedious</td>
<td></td>
</tr>
<tr>
<td>• Difficult to identify damage</td>
<td></td>
</tr>
<tr>
<td>• Difficult to prioritize patches</td>
<td></td>
</tr>
<tr>
<td>Value-add from CTI:</td>
<td></td>
</tr>
<tr>
<td>• Add context to reconstruction</td>
<td></td>
</tr>
<tr>
<td>• Prioritize patches</td>
<td></td>
</tr>
<tr>
<td>• Focus in on potential targets</td>
<td></td>
</tr>
</tbody>
</table>

Technical Analyst || Threat Researcher

- Understand adversary tradecraft and adversary workflows
- Understand common forensic artifacts and evidence of existence and execution
- Provide detailed breakdown of infection chains
- Examine malware or incident response reports to extract IOCs
- Recognize patterns in TTPs employed with a focus on human fingerprints
- Enrich adversary understanding by pivoting in commercial data sets for similar file or network characteristics
- Understand IOC utility and limitations
- Develop high fidelity IOCs
- ...
CTI Support and Stakeholders
CTI Support and Stakeholders

Executive Summary
This document provides a background on observed attacker activity to familiarize defenders with APT28 and provide some targeted suggestions for hunting for indications of the group's presence in an environment. This document should be used in conjunction with the Windows Hunting documentation, which provides recommendations for hunting techniques and data sources. Activity identified using these documents should not be assumed to be associated with APT28 as many tools and techniques are used by multiple groups. This documentation also does not cover the scope of investigation and is only intended to help with the identification of activity. If malicious activity is identified, consider seeking outside assistance, if needed, especially as this guidance focuses on post-compromise activity indicative of an ongoing and potentially extensive incident. This guide should be used alongside the general Windows hunting guide.

Observed Staging Directories
Directories that the actor has used for storing malware, utilities and/or stolen data.

- %ALLUSERSPROFILE%\-C:\ProgramData
- %ALLUSERSPROFILE%\intuit\-C:\ProgramData\Intuit
- %ALLUSERSPROFILE%\msauto\-C:\ProgramData\msauto
- %ALLUSERSPROFILE%\nl\-C:\ProgramData\nl
- %ALLUSERSPROFILE%\logs\-C:\ProgramData\logs
- %ALLUSERSPROFILE%\Microsoft\-C:\ProgramData\Microsoft
- %ALLUSERSPROFILE%\NVIDIA\-C:\ProgramData\NVIDIA
- %ALLUSERSPROFILE%\TEMP\-C:\ProgramData\TEMP
- %APPDATA%\-C:\Users*user*\AppData\Roaming
- %PROGRAMFILES%\update services\-C:\Program Files\update services
- %SYSTEMDRIVE%\temp\-C:\temp
- %SYSTEMROOT%\-C:\Windows
CTI Support and Stakeholders

Top 10 Most Frequently Seen Techniques
1. T1027: Obfuscated Files or Information 51.4%
2. T1058: Command and Scripting Interpreter 44.3%
3. T1071: Application Layer Protocol 38.8%
4. T1082: System Information Discovery 31.8%
5. T1083: File and Directory Discovery 31.7%
6. T1070: Indicator Removal on Host 31.7%
7. T1056: Process Injection 28.5%
8. T1021: Remote Services 27.4%
9. T1497: Virtualization/Sandbox Evasion 26.3%
10. T1105: Ingress Tool Transfer 26.5%

Top 5 Most Frequently Seen Sub-Techniques
1. T1071.001: Web Protocols 32.0%
2. T1059.001: PowerShell 29.4%
3. T1070.004: File Deletion 27.1%
4. T1589.003: Service Execution 26.5%
5. T1021.001: Remote Desktop Protocol 23.4%
CTI Support and Stakeholders

Vulnerability Intelligence Analyst

- Understand the patching lifecycle, organizational considerations, prioritization criteria, and SLAs
- Employ CVSS, CVE, and how vendor risk scoring scales to establish a patch prioritization criteria
- Maintain situational awareness on adversaries using weaponized vulnerabilities or if they are POC
- Familiarity with modern operating system memory protections, application, and network security controls
- Knowledge of the organization’s tech stack, asset inventory system, CMDB, and gold image process
- Explain exploit chains using n-days and 0-days, how exploit code works, and how patches break parts of the chain
- ...
CTI Support and Stakeholders

Actors Exploiting Zero-Days by Country

Top Referenced Vulnerabilities, H1 2022
CTI Support and Stakeholders

Technical Analyst | Threat Researcher

- Examine malware or incident data (reports, tickets, etc.) to extract relevant IOCs
- Understand the enterprise security stack and relevant internal partners
- Communicate findings using standardized nomenclature (STIX/TAXII, JSON, etc.) security controls can ingest
- Craft detections using YARA, Snort, Suricata, etc.
- Curate and evaluate threat feeds
- ...
"Mandiant Cyber Threat Intelligence Analyst Core Competencies Framework" published in May 2022

Helps solve 3 problems:
- Empower analyst growth pathways
- Provide aspirant analysts developmental guideposts
- Raise awareness of CTI roles and responsibilities to cyber security partners

Broken into 4 pillars with 12 competency areas with 178 defined KSAs

Thanks to James Sadowski, Kelli Vanderlee, Steve Stone, Jeff Compton, Joe Slowik, and Jake Williams for helping develop this framework
CTI Analyst Core Competencies

Problem Solving

Critical Thinking

The ability to conceptualize, identify, evaluate and synthesize information to formulate unbiased judgements, analytic lines and relevant recommendations. These judgements should be based on one’s understanding of an organization’s cyber threat realities, cyber security posture and alignment to an organization’s mission, vision and goals. Analysts should be able to:

- Employ the Intelligence lifecycle
- Identify first, second and third order effects
- Evaluate the credibility of intelligence sources based on reliability, level of access and placement
- Approach data sets andvendor reports using inductive and deductive reasoning
- Apply structured analytic techniques (SATI) and peer review to mitigate inherent cognitive biases
- Ability to create and evaluate alternative competing hypotheses

Critical thinking also encompasses the ability to think outside-of-the-box to devise creative solutions and analytic frameworks for research, data collection and effective communication. Critical thinking is a fundamental prerequisite for innovation and trend forecasting.

Research and Analysis

The ability to capture stakeholder needs in the form of intelligence requirements and prioritize data sets and tools against them in a collections management framework. Research uses logic and sound reasoning to identify technical and non-technical data sources to uncover new leads, identify new connections, and reach clear analytic conclusions. CTI research can range from extracting indicators of compromise to identifying files that share similar characteristics to finding associated malicious infrastructure used by a cyber threat group. Analysis involves interpreting and synthesizing the results of research.

- Understanding the utility and limitations of various types of indicators of compromise (IOCs)—atomic, computer, and behavioral
- Identifying what data is needed to enrich existing data sets, where to procure it and how to integrate it
- Ability to analyze malware. Inspect network traffic, and triage log events data

Research skills include the ability to mine, interpret, extract, store, and pivot on relevant content found in the following types of internal, commercial, and open source data sets to enrich existing intelligence collection and understanding of cyber threat groups:

- Passive DNS (pDNS) records. Example: PassiveTotal/FRiskIQ and Domain Tools
- Netflow data. Example: Team Cymru Augury
- Internet scan data. Example: Shodan and Censys.io
- Malware 200s. Example: VirusTotal, Hybrid Analysis, and any.run
- Network traffic. Example: Packet captures (PCAP)
- Sandbox submissions
- Host-based system event logs

Analytic skills include the ability to query data sets, develop logical data schema and tagging, normalize and apply structure to unstructured data and interpret findings to identify trends and patterns over time. Research and analysis skills also include the ability to examine technical artifacts whether or not they are host-based (such as scripts and compiled malware) or network-based (such as infrastructure relationships and domain name structure). Research and analysis are significantly aided by familiarity with scripting languages such as Python, SQL for interacting with data sets, execution environment such as Jupyter or Zeppelin notebooks, visualization tools like Tableau or PowerBI, and other tools to quickly manipulate data sets.

Strong statistical reasoning skills are also critical and includes concepts such as hypothesis testing, statistical significance, conditional probability, sampling and bias.

Research and analysis also benefits from linguistic capability, cultural background and regional familiarity.

Investigative Mindset

The ability to understand complex challenges and develop out-of-the-box solutions to solve them. The investigative mindset requires a thorough understanding of cyber threat actors and their tactics, techniques and procedures (TTPs) as well as existing CTI frameworks, CTI tools, and IT systems. The investigative mindset involves maintaining an open mind to determine whether existing constructs, frameworks or tools require uplift, or if there is the need to develop new ways in response to innovations in adversary tradecraft or technologies.

The investigative mindset also allows analysts to develop intuition and identify signals in noise. The investigative mindset is different than critical thinking and blends research and analysis with identifying and accounting for cognitive and logical biases and employing SATI to overcome them.
CTI Analyst Core Competencies

Critical Thinking
- Apply logic and reasoning
- Undertake efforts that align with the business
- Considers current and future needs
- Deep knowledge on industry construct and trends
- Ability to devise out-of-the-box solutions

Problem Solving

Research and Analysis
- Understand internal and external data sets and tools
- Understand the limitations of IOC types
- Identify unique fingerprints and patterns
- Mine, interpret, extract, store, and pivot on relevant content
- Generate intelligence on technical, cultural, or linguistical leads

Investigative Mindset
- Employ inquisition and familiarity with adversary operations, tradecraft, and forensic artifacts to determine logical next steps
- Devise novel solutions by applying out-of-the-box thinking
CTI Analyst Core Competencies

Professional Effectiveness
Communication

The ability to present analytic conclusions, research and methodologies to various audiences in an effective manner through written finished intelligence (FINTEL) products, slide decks, emails, Confluence or SharePoint pages, internal tickets and briefings. The Bottom-Line-Up-Front (BLUF) and an executive summary are two effective methods for presenting analytic findings. A core tenet is the ability to identify and adapt communication style. This covers medium, language, message, cadence and preference for different audiences, ranging from the strategic, executive level to highly technical practitioners, such as detection engineers and security architects. This also includes working with the media and external liaison partners. Existing CTI frameworks can be used to graphically represent organizational threat models, intrusion activities, adversary operational workflows and the relationship between technical and non-technical adversary artifacts. Examples include:

- Organizational threat realities modeled in a cyber threat profile
- Adversary operational tradecraft using a CTI-centric kill chain
- Clustering intrusion activity to define an intrusion set or activity group
- Adversary workflows, playbooks, and hunt packages using standardized vernacular
- Connections between adversary tools, infrastructures, personas and suspected affiliation using Maltego, MISP or other link analysis tools, workbenches or hypergraphs

It is important to have the ability to clearly convey judgments using probabilistic language to judgements can be uncoupled from facts and direct observations. Of related importance is the ability to use precise language to ensure the intended message is properly conveyed and does not prompt unnecessary alarm. Employing storytelling frameworks such as AMIS—audience, intent, message and story—helps analysts convey assessments.

Finally, awareness of information sharing standards and communities of interest is critical. This includes technology standards such as Structured Threat Information Expression (STIX) or JavaScript Object Notation (JSON) to share information between machines using Trusted Automated Exchange of Intelligence Information (TAXII) or other conduits, industry-specific information sharing groups and private-public Information Sharing and Analysis Centers and Organizations (ISACs and ISAOs). Familiarity with cyber policy and law enforcement mechanisms used to counter cyber actions to include take-downs, sanctions, indictments, raids, and public awareness and advisory campaigns.

Teamwork and Emotional Intelligence

The ability to interact effectively with peers and leadership to build a collaborative culture that embraces diversity in backgrounds, skills, knowledge, and experiences to identify and answer key intelligence questions (KIQs). Drawing on individuals' unique characteristics helps teams provide peer mentoring and learning opportunities to fill knowledge and skills gaps while building a culture of cohesion and trust. Being able to work with stakeholders to align information about business operations, information shortfalls and decision-making processes can inform threat intelligence processes and improve success.

Emotional intelligence includes fostering good judgement and situational awareness to understand when and how to engage peers, leadership, or clients while understanding the organizational impacts of adverse behaviors. Four core skills of emotional intelligence are self-awareness, self-control, social awareness and relationship management.

Business Acumen

The ability to understand an organization's mission, vision, goals and how business decisions could influence an organization's cyber risk exposure. Examples of such decisions include prospective mergers and acquisitions or expanded operational footprint into a new geography. Shifts in strategic direction may prompt an organization to re-evaluate risks to trade secrets and intellectual property. Cyber threat analysts may be required to provide a net assessment on change in risk exposure and revisit cyber groups that have the intentions, capability and opportunity to threaten the organization. Public commentary by an organization's leadership may also have cyber risk implications. CTI analysts should be able to understand and evaluate outcomes for threat intelligence in terms of demonstrable value to the business.

It is important to be aware of how organizational structure and internal politics within an organization’s construct affect cyber security collaboration and decisions. Business acumen includes understanding the lexicon, terminology and frame of reference used by various organizational elements. It allows analysts to articulate findings to better resonate with stakeholders, which may include conveying threat in the context of risk, expressing return on investment for implementing certain cyber security measures or conveying budgetary needs. Ideally, keen business acumen translates to finding alignment opportunities within each phase of the Intelligence Lifecycle.
CTI Analyst Core Competencies

Professional Effectiveness

Communication
- Adapt presentation of analytic conclusions, research, and methodologies to audience type
- Leverage CTI and industry frameworks to graphically depict adversary workflows
- Understand how to leverage CTI data sharing communities of interest (ISACs/ISAO) and data storage and sharing standards (JSON/STIX and TAXII)

Teamwork and Emotional Intelligence
- Determine when and how to engage peers and leadership
- Provides opportunities and solutions
- Able to navigate tricky situations, diffusing conflicts as they arise
- Ability to motivate and cultivate a positive environment
- Awareness of how actions can be conveyed by others and calibrate responses accordingly

Business Acumen
- Forecast changes in risk exposure based on shifts in organizational mission, vision, goals, and public persona
- Understand industry specific processes and technologies ex) FinTech systems
CTI Analyst Core Competencies

Technical Literacy

Enterprise IT Networks
The ability to understand operating systems principles, which include:
- Design decisions inherent to system architecture and implications on file storage, memory management and network connections.
- How identities, access, and authorization are administered, provisioned, and managed on internal and domain-connected workstations and servers.
- How security roles and attributes are assigned to user accounts and processes.
- Information stored natively in the operating system's event logs.
- How user credentials, remote connections, and shared drive mappings are stored.
- Role the kernel plays in security policy enforcement.
- How systems communicate with one another and the protocols used for certain types of communication. Examples include RDP, SSH, SMB, FTP, DNS, and HTTPS.
- Functionality to forward events to a centralized logging platform.

The ability to understand business decisions around enterprise network design:
- Why enterprise networks often use a virtualized environment over physical workstations and servers.
- Why certain operating systems are preferred over others to meet business needs.
- How technology advancements and adoption of cloud computing services often augment business functionality and the security implications of an expanded network perimeter.

Cyber Security Ecosystem
The ability to identify the core concepts, components, and conventions associated with cyber defensive measures and cyber security processes, technologies, and job roles. A core tenet is knowledge of industry best practices and frameworks such as the National Institute of Science and Technology's (NIST) Cyber Security Framework (CSF) and how defensive approaches and technology align to at least one of the five cyber defense phases (identify, protect, detect, respond, and recover).

Key concepts:
- Access control
- Identity and access management
- Multifactor authentication
- Need-to-know
- Network segmentation
- Public Key Infrastructure (PKI)
- Symmetric and asymmetric cryptography use cases
- Signature-based and behavior-based detection.
- Examples: Yara and Snort
- Fuzzy hashing algorithms. Examples: SSDP
- Threat hunting and incident response
- Red team, purple team, and proactive cyber defense
- Zero Trust Architecture

Key plans, processes, and policy documents:
- Business continuity plan (BCP)
- Disaster recovery plan (DRP)
- Incident response (IR) plan
- System profiling, standardization, and account management:
 - IT asset inventory management
 - Configuration management and golden images
 - Privileged account management
 - Security-centric technologies:
 - Network and boundary devices
 - Firewalls
 - Email inspection and sandboxing
 - Intrusion detection and prevention systems (IDPS/IPS)
 - Netflow collectors
 - Endpoint
 - Antivirus
 - Endpoint detection and response (EDR)
 - Extended detection and response (XDR)
 - Centralized log collection and related technologies
 - Security incident and event management (SIEM) systems
 - User entity behavior analytics (UEBA)
 - Security orchestration, automation, and response (SOC/IR)

Organizational Cyber Security Roles and Responsibilities
The ability to understand cyber security and cyber security-adjacent job roles, responsibilities, and the interplay between the various functions within an organization:
- Security operations center (SOC) Tier 1 watch floor analyst
- SOC Tier 2 analyst and incident responder
- SOC Tier 3 analyst and team lead
- Forensic analyst
- Reverse engineer
- Vulnerability analyst
- Security architect
- Detection engineer
- Red team
- Blue team
- Purple team
- Governance, risk management, and compliance (GRC)
- Chief privacy officer
- IT support and help desk

For analysts, an established RACI (responsible, accountable, consulted, and informed matrix) and service level agreements (SLAs) can clarify the expectations and responsibilities for peer review, intelligence product development and requests for additional information with the cross-functional cyber defense partners.
CTI Analyst Core Competencies

Technical Literacy

Enterprise IT Networks
- Active Directory, Kerberos, and the role of GPOs
- Identity and access management
- Security roles and attributes
- How systems operate and interact with one another
- Virtualized infrastructure
- On-prem, hybrid, and off-prem cloud computing solutions

Cyber Security Ecosystem
- NIST Cybersecurity Framework (CSF) and its five phases
- NIST SP 800-53 cyber security controls
- Cyber security hygiene best practices

Cyber Security Roles and Responsibilities
- How each role supports risk exposure management
- Interplay between job roles to support collective defensive efforts
- Responsible, Accountable, Coordinated, and Informed (RACI)
- Service level agreements (SLAs)
CTI Analyst Core Competencies

Cyber Threat Proficiency

Drivers of Offensive Operations
The ability to characterize the organizational composition of an offensive cyber program, its constituent job functions, and operational decisions that affect capability development and potential impact on achieving mission objectives. Such decision points include allocating finite resources to outcomes elements of the cyber program to purchase operational tools, enlist contractor support, or purchase criminal capabilities. Additional decision points include achieving the operational agreement to support such programs based on legal authorities and creating operational front companies.

The secondary tenant of this competencies is to identify the underpinning motivations behind why nation-state, criminal, and ideologically motivated hackers conduct cyber operations, their historic context, and associated sophistication. This includes nation-states using cyber operations as a tool of statecraft to achieve geopolitical objectives, ranging from conducting espionage to steal diplomatic or military information on an enemy’s bilateral or multilateral position in anticipation of negotiations, to cyber-enabled influence operations to disruptive attacks in the lead up to and during a military action.

A keen understanding of acceptable operations undertaken during the peace time and the ethical shift during a war time is critical. Additionally, analysts should be able to identify operations that threaten the line of acceptable use and push existing norms to include operations undertaken such as those that impact water purification and the water ecosystem region of the world.

Similarly, a keen tenant in this competency is the ability to recount the history and evolution of adversarial operations and the tradecraft per cyber threat groups. A large base of historical examples can help chart the evolution of the use and drivers of cyber operations, allowing analysts to identify trends and deviations between threat groups. This also includes the ability to forecast targeting efforts based on historical, enduring objectives or in response to tactical situations versus identifying potential targets of opportunity.

Threat Concepts and Frameworks
The ability to identify and apply appropriate CTI terms and frameworks to track and communicate adversary capabilities or activities. This competency also includes understanding the evolution of cyber threat terms, reasoning behind the development of various CTI frameworks and what problems they helped the CTI community overcome. Cyber threats are defined as a function of actor intention/motivation, capabilities and opportunity. This competency focuses heavily on threat actor capabilities.

- **Vulnerabilities and exploits**
 - The Common Vulnerability Scoring System (CVSS) system
 - Common Vulnerability and Exposure (CVE) system
 - Software vulnerability categories
 - Not all vulnerabilities can be exploited
 - Zero-day and n-day vulnerabilities
 - Exploit development and vulnerability weaponization
 - Exploit and infection chains
 - The patch management lifecycle
 - Exploit procurement gray market
 - Role of bug bounty programs

- **Malware**
 - Ability to explain a malware execution chain stage 1 droppers to launchers to post-exploitation tools
 - Ability to explain how adversaries interact with malware through command and control (C2) servers
 - Ability to explain how malware communicates with C2 servers
 - Ability to explain the differences in the utility of using scripts compared to compiled malware
 - Ability to identify modular malware or use of builders
 - Malware-as-a-service marketplaces

- **Infrastructure**
 - Differences in infrastructure used for malware and exploit delivery compared to C2 and data exfiltration
 - Selection and preference of hosting services
 - Privacy protections offered by hosting providers or based on EU Privacy Directives
 - Dynamic DNS
 - Attribution, intrusion clustering, and naming conventions
 - Characteristics of intrusion activity
 - Creating intrusion set clusters to characterize activity types
 - Ability to identify and differentiate unique, novel attributes of intrusion activity and common ones as anchoring functions to suspect attribution and clustering efforts
 - Vendor naming convention for intrusion activities of cyber groups and why vendors do not often borrow existing names from one another
 - How to map various vendor names to identify similar cyber threat group threat activities

- **CTI Frameworks**
 - Factor Analysis of Information Risk (FAIR)/Vocabulary for Event Recording and Incident Sharing (VERIS) for threat modeling
 - The Lockheed Martin Cyber Kill Chain. Mandiant’s Targeted Attack Lifecycle, or the Unified Cyber Kill Chain to visually depict the discrete phases of an adversary’s operation
 - The Diamond Node of Intrusion Analysis to cluster, track, and group intrusion activities
 - The MITRE ATT&CK framework of adversary operational TTPs
 - MITRE AT&CK Navigator to create time delimited playbooks of adversary TTPs

Threat Actors and TTPs
The ability to discern vendor naming convention used across cyber threat groups, their nation-state or criminal affiliation, and an understanding of the tactics, techniques, and procedures (TTPs) across groups primarily cyber operations. A critical tenet in this competency is for analysts to be able to identify key indicators across a cyber kill chain to determine adversary operational workflows and preferences. Such preferences also account for hoster provider selection for operational infrastructure and network anonymization technologies.

Analysts should be able to enumerate the range of initial access vectors and identify how various threat groups exhibit operational preference ranging from spear phishing to using compromised websites for payload delivery to conducting close-access operations in the vicinity of a target’s physical location. Likewise, analysts should understand common internal reconnaissance commands adversaries use to perform system network, and file discovery. This includes understanding lateral movement techniques such as using proxy chains, modifying IP tables, or port or reverse forwarding to include IP and ports of each.

Analysts should be able to explain why threat groups of ten only maintain a few footholds into a victim’s network, only almost exclusively in a singular system in a victim’s network for data staging, and employ different command and control servers across exploitation, back on, interactive operations, and exfiltration. Similarly, analysts should be versed in the reasoning behind why a cyber operator would prefer to employ malware instead of interacting directly with a remote host. Lastly, analysts should be able to explain why and how threat groups employ network-based obfuscation such as protocol tunneling, host-based anti-forensic techniques, and host-based obfuscation idioms of malware.
CTI Analyst Core Competencies

Drivers of Offensive Operations
- Identify the roles and responsibilities of individuals in an offensive cyber program
- Understand resource constraints and outsourcing considerations
- Understand actor motivations and differentiate between enduring vs. tactical requirements
- Pinpoint drivers that should shift targeting priorities or TTPs

Threat Concepts and Frameworks
- Vulnerabilities and Exploits
- Malware and interactive operations
- Adversary mid-point Infrastructure
- Attribution methodology, intrusion sets, and threat activity group nomenclature
- Key CTI frameworks and the problems they help the CTI community solve to include MITRE’s ATT&CK, the various kill chain models, and the Diamond Model of Intrusion Analysis

Threat Actors and TTPs
- Loosely identify actor affiliation based on vendor naming convention
- Reasoning why vendors do not borrow each other’s threat actor group names
- Characterize elements of adversary’s operational tradecraft
- Explain how key concepts like remote access, persistence, lateral movement, staging, and data exfiltration
Parting Thoughts

• Unicorn analysts exist, but are rare
• No standard role designators lead to confusion
 • Threat Intelligence Analyst vs. Threat Researcher
 • Strategic vs. Threat vs. Context Analyst
 • Technical Analysts
 • Intelligence Engineer
• Unspoken expectations exist on both sides
• Be proactive as time permits
 • “Day in the life of” sessions are incredibly helpful
 • Lunch and learns/brown bags
 • Cultivate liaison advocates and champions
 • Provide scoped RFIs and feedback
 • Establish realistic SLAs
Resources

Introducing the Mandiant Cyber Threat Intelligence (CTI) Analyst Core Competencies Framework Blog

Mandiant CTI Analyst Core Competencies Framework (direct link)

Mapping SANS FOR578 Coverage to the Mandiant CTI Core Competencies Framework

Breaking Into the CTI Field: Demystifying the Interview Process and Practice Questions

NEW https://tinyurl.com/CTI-Core-Competencies

Interview Score Card for Strategic Analyst

<table>
<thead>
<tr>
<th>Applicant Name</th>
<th>Problem Solving</th>
<th>Professional Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rating</td>
<td>Competency</td>
<td>Trait</td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>The ability to understand the threat behavior and organize the cyber threat solution, cyber incident response, and the results of incident response efforts</td>
<td>Communication</td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>Evaluate the credibility and significance of various indicators of compromise, threat actor behavior, and technical evidence</td>
<td>Communication</td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>Develop a mitigation plan based on the identified threat actors and their capabilities</td>
<td>Communication</td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>Synthesize relevant information from various sources to formulate a threat actor model</td>
<td>Communication</td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>Identify the best course of action to address the threat</td>
<td>Communication</td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>Formulate an effective strategy to incorporate intelligence into operational decision-making</td>
<td>Communication</td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>Test and evaluate the effectiveness of the strategy</td>
<td>Communication</td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>Mitigate the impact of advanced persistent threat actors by applying automated and manual controls to the network</td>
<td>Communication</td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>The ability to create detailed and actionable recommendations for threat actors</td>
<td>Communication</td>
</tr>
<tr>
<td>Research and Analysis</td>
<td>Systematically identify and analyze technical data to uncover new threats and identify new connections between data points</td>
<td>Communication</td>
</tr>
<tr>
<td>Research and Analysis</td>
<td>Mitigate potential threats by analyzing data and identifying new connections between data points</td>
<td>Communication</td>
</tr>
<tr>
<td>Research and Analysis</td>
<td>Conduct and refine analysis to identify and mitigate potential threats</td>
<td>Communication</td>
</tr>
<tr>
<td>Research and Analysis</td>
<td>Blend public and private data sources to identify new risks and threat actors</td>
<td>Communication</td>
</tr>
<tr>
<td>Research and Analysis</td>
<td>Assess the potential impact of new and emerging threats</td>
<td>Communication</td>
</tr>
<tr>
<td>Technical Proficiency</td>
<td>Approach data connecting to in-depth and interactive tools</td>
<td>Communication</td>
</tr>
<tr>
<td>Professional Effectiveness</td>
<td>Rating</td>
<td>Competency</td>
</tr>
<tr>
<td>Communication</td>
<td>Understand how certain aspects of cyber threat intelligence and advanced persistent threats interact and how to effectively leverage these insights to enhance information protection efforts</td>
<td>Communication</td>
</tr>
<tr>
<td>Communication</td>
<td>The ability to present complex technical information in a clear and concise manner</td>
<td>Communication</td>
</tr>
<tr>
<td>Communication</td>
<td>Develop strategic intelligence to support operational and strategic decision-making in an environment that requires a high level of interactivity</td>
<td>Communication</td>
</tr>
<tr>
<td>Communication</td>
<td>Use the proper techniques and methods to analyze technical data</td>
<td>Communication</td>
</tr>
<tr>
<td>Communication</td>
<td>Translate technical data into actionable insights</td>
<td>Communication</td>
</tr>
<tr>
<td>Communication</td>
<td>Leverage probabilistic reasoning to identify potential threats and vulnerabilities</td>
<td>Communication</td>
</tr>
<tr>
<td>Communication</td>
<td>Identify potential threats and vulnerabilities</td>
<td>Communication</td>
</tr>
<tr>
<td>Communication</td>
<td>Communicate effectively with stakeholders to build a collaborative culture that promotes cybersecurity excellence</td>
<td>Communication</td>
</tr>
<tr>
<td>Communication</td>
<td>Develop and execute a comprehensive threat intelligence strategy</td>
<td>Communication</td>
</tr>
<tr>
<td>Communication</td>
<td>Identify potential threats and vulnerabilities</td>
<td>Communication</td>
</tr>
<tr>
<td>Communication</td>
<td>Analyze and interpret data to identify potential threats and vulnerabilities</td>
<td>Communication</td>
</tr>
<tr>
<td>Communication</td>
<td>Review and evaluate technical data</td>
<td>Communication</td>
</tr>
<tr>
<td>Communication</td>
<td>Leverage probabilistic reasoning to identify potential threats and vulnerabilities</td>
<td>Communication</td>
</tr>
</tbody>
</table>

NEW https://tinyurl.com/CTI-Core-Competencies
Questions?

Stop Trying to Make Fetch Happen

@_John_Doyle