Journey,_

' Security
)

A baker’s dozen: application security on a

limited budget

Copyright © Security Journey

About Chris Romeo

SECURITY BACKGROUND

 CEO/ Co-Founder @ Security Journey
e 22 years in the security world, CISSP, CSSLP

® 10years at Cisco, leading security education.

* Co-Lead of the OWASP Triangle Chapter

TALK TO ME
The Application , @edgeroute
Security Podcast @AppSecPodcast

. Security
hY

Journey,

1. Traditional application security programs
2. The importance of security community
3. Building a program based on OWASP

e Awareness and education
* Process and measurement

* Tools
4. Final thoughts

§1 Security

Journey,

Traditional AppSec programs

@) (©

PEOPLE PROCESS TOOLS

N Securit
S e

Goals of an AppSec Program

Limit vulnerabilities Build secure Provide processes Demonstrate
in deployed code. software and and tools for software security
teach developers AppSec maturity through

to build secure standardization. metrics and

software. assessment.

. Security
hY

Journey,

What if | had to develop.an application
security program with a budget of S0? "

o

-\
E
e N
E\

Enhance with Fill in missing areas of
OWASP Resources your program

v

Security Champions

se *cu-ri-ty cham - pi-on [sih-
kyer - uh - tee cham - pee - uhnl,
noun 1 a person passionate about
security with a desire to educate
those around them.

we all want to embed security

champions in our companies.

. Security
Ky

Journey,

FLAGSHE. * POYQ
PROJECTS B ior
= 1q PROJECTS

’ Sediani AR 'ofé S'é'p_fgm'_bér,20‘19 e =

Scale of project risk

1-3

4-6

10

Explanation

The only way this goes away is if owasp.org
disappears off the Internet

Stable project, multiple releases, high likelihood of sustainability

Newer project, fewer releases

Older project with a lack of updates within the last year

If | added one of these to this project, | should have my head
examined

' Security
hY

Journey,

NOTICE

Use OWASP projects with

caution. There is no guarantee
that a project will ever be
updated again.

The categories

Awareness, knowledge, and education

Process and measurement

Awareness, knowledge and education

OWASP Top 10 - 2017

The Ten Most Critical Web Application Security Risks

OPWASP . t e \
ro Ive
%NTROLS OWASH

. Security
Ky

Journey,

OWASP Top 10 - 2017

The Ten Most Critical Web Application Security Risks

Project Risk

0

A1:2017-Injection

A2:2017-Broken Authentication

A3:2017-Sensitive Data Exposure

A4:2017-XML External Entities (XXE)

A5:2017-Broken Access Control

A6:2017-Security Misconfiguration

A7:2017-Cross-Site Scripting (XSS)

A8:2017-Insecure Deserialization

AQ:2017-Using Components with Known Vulnerabilities

A10:2017-Insufficient Logging & Monitoring

https:/ /owasp.org/www-project-top-ten /

aéz,
&y

Security
Journey,

CONTROLS

Project Risk

2

C1 Define Security C2 Leverage

Requirements Security
Frameworks and
Libraries
C5 Validate All C6 Implement

Imputs Digital Identity

C9 Implement
Security Logging
and Monitoring

., https:/ /owasp.org /www-project-proactive-controls/

~

C3 Secure Database
Access

C7 Enforce Access
Contirol

C10 Handle All
Errors and
Exceptions

C4 Encode and
Escape Data

C8 Protect Data
Everywhere

%" Security
hY

Journey,

The intermingling

R s
A1:2017-Injection C4 Encode and Escape Data, C5 Validate All Inputs
A2:2017-Broken Authentication C6 Implement Digital Identity

A3:2017-Sensitive Data Exposure C8 Protect Data Everywhere

A4:2017-XML External Entities (XXE) C5 Validate All Inputs

A5:2017-Broken Access Control C7 Enforce Access Control

A6:2017-Security Misconfiguration None

A7:2017-Cross-Site Scripting (XSS) C4 Encode and Escape Data, C5 Validate All Inputs
A8:2017-Insecure Deserialization C5 Validate All Inputs

ijec:;;ﬁi:g Components with Known C2 Leverage Security Frameworks and Libraries
A10:2017-Insufficient Logging & Monitoring C9 Implement Security Logging and Monitoring

. Security
hY

Journey,

\ O*ﬁ ‘PQ
OWASRH

SERIES PROJECT

Project Risk

2

Cross Site Scripting Prevention
RULE #0 - Never Insert Untrusted Data Except in

Allowed Locations

The first rule is to deny all - don't put untrusted data into your HTML document unless it is within one of
the slots defined in Rule #1 through Rule #5. The reason for Rule #0 is that there are so many strange
contexts within HTML that the list of escaping rules gets very complicated. We can't think of any good
reason to put untrusted data in these contexts. This includes "nested contexts" like a URL inside a

javascript -- the encoding rules for those locations are tricky and dangerous.

If you insist on putting untrusted data into nested contexts, please do a lot of cross-browser testing and
let us know what you find out.

Directly in a script:

<script>...NEVER PUT UNTRUSTED DATA HERE...</script>

Inside an HTML comment:

<!——,..NEVER PUT UNTRUSTED DATA HERE...-—>

In an attribute name:

<div ...NEVER PUT UNTRUSTED DATA HERE...=test />

s,
A< https://cheatsheetseries.owasp.org/

<8

Security
Journey,

Project Risk

3

' Security
hY

Journey,

Missing pieces in awareness, knowledge and education

Delivery of awareness
and education

Administration of the
training platforms

. Security
hY

Journey,

Awareness and education: impact and headcount

. Security
hY

Journey,

Awareness and education: getting started

Process and Measurement

CODE

Application Security Verification Standard REVIEW Application Threat Modeling

OLUSD ‘ Testing Guide Sn M M

. Security
hY

Journey,

<"SAMM

Project Risk

]

SAMM v2

Software Assurance
Lifecycle

Verification Operations

Secure
Build

Threat
Assessment

Build Software
Process Dependencies

Secure
Deployment
Supplier Deployment Secret
Security Process Management
| 3 2 \)

] Secure Defect j Security
Architecture Management Testing
Architecture Technology Defect Metrics & Scalable Deep
Design ‘Management Tracking Feedback aseline ~ Understan

(S A g \ VN ¥ |
Stream A Stream B

Stream A Stream B Stream A Stream B

Stream A Stream B

https:/ /owasp.org /www-project-samm /

. Security
hY

Journey,

Applcaton Secuty Verfcaton tandar

V1. Architecture, designand V11. HTTP security

threat modelling configuration

V2. Authentication V13. Malicious controls
V3. Session management V15. Business logic

V4. Access control V16. File and resources

V5. Maliciousinput handling V17. Mobile

V7. Cryptography at rest V18. Web services

V8. Error handling and V19. Configuration

logging

VQ. Data protection V11. HTTP security
configuration

V10. Communications

https:/ /owasp.org/www-project-application-security -verification-standard /

+.

+

3 .-ADVANCED

2 STANDARD

OWASP ASVS LEVELS

5

1 " OPPORTUNISTIC

Security
Journey,

Application Threat Modeling

Project Risk

S

4 Questions

Most threat model methodologies answer one or more of the following questions in the technical steps which they
follow:

1. What are we building?

As a starting point you need to define the scope of the Threat Model. To do that you need to understand the
application you are building, examples of helpful techniques are:

Architecture diagrams

Dataflow transitions

Data classifications

You will also need to gather people from different roles with sufficient technical and risk awareness to agree
on the framework to be used during the Threat Modelling exercise.

2. What can go wrong?

This is a “research” activity in which you want to find the main threats that apply to your application. There are
many ways to approach the question, including brainstorming or using a structure to help think it through.
Structures that can help include STRIDE, Kill Chains, CAPEC and others.

3. What are we going to do about that?
In this phase you turn your findings into specific actions. See Threat_Modeling_Outputs

4. Did we do a good enough job?

Finally, carry out a retrospective activity over the work you have done to check quality, feasibility, progress, and/or
planning.

., https:/ /www.owasp.org/index.php /Application_Threat_Modeling
1\- N Securit
& YA

Journey,

CODE
REVIEW
GUIDE

Project Risk

4

N

Secure code review methodology

Technical reference for secure code review: OWASP Top 10

HTMLS

Same origin policy [Frunet ot tesm e ks 1/
T = o ol e henciient() | Sy * ’

Reviewing logging code U aitsegdP s lent . Insert(); .

gion

Error handling '

Buffer overruns

Client-side JavaScript

. 1 ' : %
Code review do's and don'ts Niest NotiFcaITRGRN i

‘.Qu“w a
U..““w. '“'-

Code crawling Satbract S - ot

bor

Code review checklist

https:/ /www.owasp.org/index.php /Category:OWASP_Code_Review_Project

%" Security
hY

Journey,

Information gathering

Configuration and deployment management testing

|dentity management testing

Authentication testing

Principles and techniques of testing
Authorization testing L PHASES
Session management testing REPORTING "'_kf;?f f ?Esl%
Input validation testing | " ’?F
Testing for error handling “ = > 5\\
P roiec’r Risk Testing for weak crypto TP Q\f,“

] Business logic testing

Client-side testing

., https://owasp.org/www-project-web-security-testing-guide /

~

. Security
hY

Journey,

Missing pieces in process and measurement

End-to end SDL or Secure SDLC

Program metrics Q

Deployment advice /experience on
how to be successful

§1 JSoe:rt:,rity

Process and measurement: impact and headcount

Process Measurement

A roadmap to where you are
today, and a plan for where
you want to go with your
AppSec program

ASVS provides important

. requirements

App threat modeling defines the
process with examples

Code review guide describes
how to perform a code review
and what to look for

Testing guide provides how to
test and a knowledge base of
how to exploit vulnerabilities

. Security
hY

Journey,

Process and measurement: getting started

§1 Security

Journey,

o
191 Security

J
ourney,
®

OWASP
ModSecurity
Core Rule Set

Project Risk

]

Legitimate WEE_S_E_I'VEI‘
@ requests g 'E
- &
oe]
bl ‘----"
b Apache/NGINX +
ModSecurity
Web vulnerabilities
Core Rule
Set

https: / /owasp.org/www-project-modsecurity-core-rule-set /

%" Security
hY

Journey,

f

DEPENDENCY-

Project Risk

3

N

~

;- dependency track

l anguage n‘dc

P

Jenkins
B Vulnerabilities? f::::i@?:::??::::::::j
Maven
f— — —p brIzooozzzzzziiiiizy
MGradle
: Andlyzer Dependency List of Vulns {1 1‘ __________________
: L A
v
smmd Report
https:/ /owasp.org /www-project-dependency-check /
(d S .
5O oty

Browser WebRpp
ox l -

&

@,
N
@,
Project Risk Y

2

., https://owasp.org/www-project-zap/
«-
N Securit
%}91 ecurity

Journey,

Project Risk

Edit diagram ?

Edit threats

Unauthorised access
Information disclosure
ve x

Credential theft
Information disclosure

Ao x

=+ Add a new threat...

Main Request Data Flow

!
I
I
I
Browser 1 Message Queue
1
1
X //V
Web Request pyt Message <
~
-~ -———
~
~o Messag<: S -
~, -~
’
s
s
Web Background
Application Worker Process
- ”--ﬁ‘\
Fd , - - A Y '\\
’;’ , Web App Query “ i
Read web app config ’ Results j
1 7 ! "
/ 7 Queries Worker Query'Results Read worker config
! / 1 i
1 Fa 1 . !
! Worker Queries /
I‘ 'J'
[} I
'} ri

1
Worker Config

Database

Web Application Config

https:/ /owasp.org /www-project-threat-dragon/

G Properties

Name

Database

Out of scope
Reason for out of scope

Reason for out of

scope

Isalog
Stores credentials

Is encrypted
Is signed

Journey,

. Security
hY

Missing pieces in tools

O

No options for SAST or IAST

A dashboard to track everything
(requirements management, activities,
releases, metrics)

. Security
91 ourn

Tools: impact and headcount

CRS provides a true WAF
solution

Dependency check identifies
vulnerable 3rd party software

LAP provides DAST, and plugs in
to any dev methodology

. Security
hY

Journey,

Tools: getting started

§1 Security

Journey,

Headcount summary

The 13 OWASP projects as an AppSec program

Design

Tools L Infrastructure Q ‘@, S

Application Security Verification Standard

Security Community

Process
CODE
REVIEW Application Threat Modeling S q M M
Process and Measurement
measurement
Awareness
OWASP e 3 : 0
ATFTCCgE owsrpto: o | ProMActive i
] CONTROLS OWASR P
Awareness !
and education Hands-on training
o J

. Security
hY

Journey,

Apply What You Have Learned Today

* Next week you should:
* Assess a high-level current state of your application security program and
determine if you have visible gaps
* In the first three months following this presentation you should:

* Perform a deeper assessment using OpenSAMM
* Choose one of the dozen to implement

* Within six months you should:
* Measure the impact of your first project implementation
* Plan and execute on one or two additional pieces, resources permitting

. Security
hY

Journey,

Final thoughts for an AppSec program on the cheap

1.Use Open SAMM to assess current program and future goals.
2.There is no OWASP SDL; build/tailor required.

3.Start small; choose one item for awareness and education to launch
your program.

4.Build security community early; it is the support structure.

5.Evaluate available projects in each category and build a 1-2-year plan
to roll each effort out.

6.While OWASP is free, head count is not; plan for head count to
support your “free” program.

. Security
hY

Journey,

How to engage with Security Journey

LEARN @ Free trial of the Security Belt Program

https:/ /app.securityjourney.com

APPLICATION
SECURITY PODCAST

LISTEN The Application Security Podcast
READ I!l] . < h 1 / 5 D E,Sﬁ%ﬁlﬁéuﬁ“iimzm
by 25§y sty
https:/ /www.securityjourney. com/h|5
EMAIL LVA chris_romeo@securityjourney.com
SOCIALS , @edgeroute @AppSecPodcast

Copyright © Security Journey é.l Security

J) Journey,

