Global Vulnerability Reporting (GVR): Perspectives from CVE

November 13, 2012

Steve Christey, coley@mitre.org
David Mann, damann@mitre.org
These slides were prepared to facilitate discussion about Global Vulnerability Reporting in the FIRST Technical Colloquium in Kyoto, Japan, November 13 to 15.

The opinions and recommendations in these slides do not necessarily represent an official position of The MITRE Corporation.

The opinions and recommendations in these slides are subject to change without notice.

THIS SLIDE PRESENTATION SHOULD NOT BE PUBLISHED. DISTRIBUTION IS LIMITED TO FIRST MEMBERS FOR THE PURPOSE OF FORMING A GLOBAL VULNERABILITY REPORTING SIG.
Arigatou gozaimasu (Thank you)

JPCERT/CC, IPA, and FIRST Japan
Outline

- State of CVE
- Evolution of CVE content decisions
- CVE ID management
- Other GVR considerations
SECTION 1 – STATE OF CVE
Vulnerability Information: An Inconvenient Truth

... pick any two
CVE is Growing… but not Globally

- MITRE is publishing more CVEs
 - Process and infrastructure improvements
 - More analysts
 - More CVEs from Candidate Numbering Authorities (CNAs)

- We will change the CVE ID syntax so there can be more than 10,000 IDs in a single year
 - Subject to Editorial Board review
 - MAYBE “CVE-2014-012345” but not sure

- We are defining CVE’s scope more clearly
 - Focus on the English-language software market
 - Products / sources CVE will cover

- **CVE cannot solve the Global Vulnerability Reporting problem itself**
CVE Sources and Products Details

Full-Coverage Sources
- Adobe
- Apache Software Foundation: Apache HTTP Server
- Apple
- Attachmate: Novell
- Attachmate: SUSE
- Blue Coat - kb.bluecoat.com
- CA - support.ca.com
- Check Point: Security Gateways product line (supportcenter.checkpoint.com)
- Cisco: Security Advisories/Responses
- Citrix - support.citrix.com
- Debian
- Dell Desktop/Notebook product lines
- Dell SonicWALL Network Security product line - Service Bulletins
- EMC, as published through Bugtraq
- F5 - support.f5.com
- Fortinet FortiGate product line (kb.fortinet.com)
- Fujitsu Desktop/Notebook product lines
- Google: Google Chrome (includes WebKit)
- HP: Security Bulletins
- IBM: issues in IBM ISS X-Force Database
- Internet Systems Consortium (ISC)
- Juniper: juniper.net/customers/support (JunOS?)
- Lenovo Desktop/Notebook product lines
- McAfee - kc.mcafee.com
- Microsoft: Security Bulletins/Advisories
- MIT Kerberos
- Mozilla
- OpenSSH
- OpenSSL
- Oracle: Critical Patch Updates
- RealNetworks (real.com)
- Red Hat
- RIM/BlackBerry: blackberry.com/bsc
- Samba Security Updates and Information
- SAP - scn.sap.com/docs/DOC-4218
- Sendmail
- Sophos - sophos.com/support/knowledgbase
- Symantec: Security Advisories
- Ubuntu (Linux)
- VMware
- Websense - websense.com/content/support.aspx
- HP: TippingPoint DV Labs
- HP: TippingPoint Zero Day Initiative
- ICS-CERT: ADVISORY
- MITRE CNA open-source requests
- US-CERT: Technical Cyber Security Alerts
- VeriSign Defense

Partial-Coverage Sources
- Android (associated with Google or Open Handset Alliance)
- Apple Software Foundation: Apache Tomcat
- Apache Software Foundation: other
- CentOS
- Check Point: check-point.com/defense/advisories/public/summary.html
- Cisco: Release Note Enclosures (RNE)
- Drupal
- Fedora
- Foxit Support Center - Security Advisories
- FreeBSD
- Gentoo (Linux)
- Google: other (not Chrome or Android)
- IBM ISS X-Force for non-IBM products
- IBM: issues not in IBM ISS X-Force Database
- Joomla!
- Juniper - JTAC Technical Bulletins
- kernel.org
- Mandriva
- Netscape
- OpenBSD
- PHP core language interpreter
- SCO
- TYPE3
- WordPress
- attribution.org/pipermail/vim
- AusCERT
- Core Security CoreLabs
- DOE JC3 (formerly DOE CIRC and CIAC)
- Full Disclosure
- HP: TippingPoint Pwn2Own
- http://www.exploit-db.com/
- ICS-CERT: ALERT
- Juniper: J-Security Center - Threats and Vulnerabilities
- Microsoft: Vulnerability Research (MSVR)
- oss-security
- OSVDB
- Packet Storm
- Rapid7 Metasploit
- Secunia
- SecuriTeam
- SecurityTracker
- Symantec: SecurityFocus Bugtraq (securityfocus.com/archive1)
- Symantec: SecurityFocus Bugtraq ID (securityfocus.com/bid)
- United Kingdom CPNI (formerly NISCC)
- US-CERT: Vulnerability Notes

Must-Have Products
- Adobe: all
- Apple Software Foundation: All
- Apple: all
- Attachmate: Novell
- Attachmate: SUSE
- Blue Coat: all
- CA: all
- Check Point: Security Gateways product line
- Cisco: all
- Citrix - support.citrix.com
- Debian: all
- Dell: Desktop/Notebook product lines
- Dell: SonicWALL Network Security product line
- EMC: all
- F5: all
- Fortinet: FortiGate product line
- Fujitsu: Desktop/Notebook product lines
- Google: Google Chrome (includes WebKit)
- HP: all
- IBM: all
- Internet Systems Consortium (ISC): Bind
- Juniper: all
- kernel.org (Linux kernel)
- Lenovo: Desktop/Notebook product lines
- McAfee: all
- Microsoft: all
- MIT Kerberos: all
- Mozilla: all
- MySQL: all
- NMAP: all
- OpenSSL: all
- Oracle: all
- PHP: core language interpreter
- RealNetworks: all
- Red Hat: all
- RIM/BlackBerry: all
- Samba: all
- SAP: all
- Sendmail: all
- Sophos: all
- Symantec: all
- Ubuntu: all
- VMware: all
- Websense: all
Quantity and Quality Issues in Vulnerability Disclosures

- More vulnerability researchers (while others stop disclosing)
- Better discovery and exploit methods
- More known vulnerability types
- More vulnerabilities per disclosure
 - Often 2 to 5 CVEs covering 3 to 30 bugs, sometimes 50+ CVEs
- Wider gaps in advisory quality
- More complex vulnerabilities
- More analytical complexity and effort
Why was there a Decline in CVE/NVD? One Reason: More Complex Vulnerabilities

- CVE-2012-4564: missing return value check → improperly handled integer-overflow warning → memory allocation of 0 bytes → heap-based buffer overflow
 - (CWE-252 -> CWE-190 -> [no CWE] -> CWE-122)
- CVE-2012-4487: “parent” user can switch to “child” user without having the allowed privilege
 - Must understand business logic to identify (and describe) as a vulnerability
- CVE-2012-3511: race condition leads to use-after-free
- CVE-2012-1103: special tags in a specific file format allow “injection” in email client that enables sending arbitrary files to attacker
- CVE-2012-3420: negative return value is treated as an error even when it wasn’t, leading to memory leak
- CVE-2012-4513: unexpected sign extension → heap-based buffer over-read
- Root-cause CSRF often enables other resultant vulns (SQL injection, XSS, code injection, ...
CVE is Community-Guided

- MITRE is a not-for-profit organization
 - CVE is funded by US-CERT (Dept. of Homeland Security)
- MITRE formed the CVE Editorial Board to seek consensus and guidance
 - http://cve.mitre.org/community/board/index.html
 - Recently: source/products lists, CVE ID syntax, GVR
- Early Board discussions and voting on entries (since abandoned) led to formulation of “Content Decisions”
- CVE’s Content Decisions are editorial policies
 - Inclusion – when to assign an ID
 - Counting/abstraction – how many IDs to assign
- Content Decisions are the most difficult and most important challenge for new CVE analysts and CNAs
- Candidate Numbering Authorities (CNAs) decentralize the assignment of CVE identifiers
CVE Content Creation and CNA Relationships

- Proper CVE counting takes non-zero time and training
- CNA coordination is a hidden cost that does not directly influence the number of CVEs published
- Many vendors do not publish enough vulnerabilities to become a CNA
- CNA relationships help considerably, but:
 - This is voluntary (relatively small cost)
 - MITRE still does post-disclosure CVE entry creation/maintenance
 - CNAs may be unwilling to incur costs of populating and maintaining CVE content
 - CNAs do not always follow the CVE content decisions as intended
SECTION 2 – THE EVOLUTION OF CVE CONTENT DECISIONS
Inclusion (“What Gets an ID”)

- **Day 1 (1999):** “all publicly known vulnerabilities”
 - Now: too many to cover
 - Now: are bug trackers or customer-only advisories “public”?
 - Now: historical vulnerabilities are covered by OSVDB
 - OSVDB:79400 - Marconi Wireless Telegraph (1903)
- **Then:** we thought we could define “vulnerability” properly
 - But what’s OK for one is bad for another
 - Now: need to know intended security policy / business logic
- **Then:** we shouldn’t cover configuration, IDS, malware
 - Now: CCE, CEE, CME/MAEC – but still some overlap with CCE
- **Then:** if it was reported on Bugtraq, it was probably real
 - Now: anything goes, many false positives
 - Now: security impact not always established
 - Now: external CNAs sometimes assign CVEs when CVSS = 0.0
Inclusion (Continued)

■ Then: “we don’t cover live web sites”
 – Now: no change, we just call it “cloud” and “services”
 – A major gap for tracking / trend analysis
■ Then: “we don’t cover SCADA / ICS” (2002?)
 – Now: ICS-CERT is a CNA
 – Now: coffee makers, medical devices cause physical damage
■ Then: “we don’t cover cell phones” (2003?)
 – Now: we cover phone OS, jailbreaks, and 3rd party apps
■ Then: Limited types of information leak “exposures” (e.g., full path disclosure)
 – Now: if the leak is a private memory address (important for ASLR bypass), then according to Linux it’s an “exposure” to remove, but in Windows it’s an intentional “feature”
Abstraction/Counting ("How Many IDs to Assign")

■ Day 1 (1999): “one CVE per vulnerability”
 – Didn’t work - not enough information, high analysis cost, too many IDs for some consumers

■ Next: “one CVE per bug type, per version”
 – Example: separate IDs for XSS, buffer overflows, SQL injection
 – Covers most situations, even today
 – Differing opinions about closely-related bug types
 – Sometimes an analyst must knowingly combine multiple distinct bugs into one ID

■ Next: defining how to manage overlapping disclosures
 – Disclosure 1: bugs A, B, C, and D in version 1.0
 – Disclosure 2: bugs C, D, E, and F in version 2.0

■ Next: “Separate root cause from bug type, if known”
 – “Classic” buffer overflows vs. integer overflows
Abstraction/Counting (Continued)

- Now: decision tree with about 20 questions (not public)
- Now: “one CVE per bug type, per version, per researcher, per 1-day disclosure period for that researcher” (MITRE)
- Now: researchers can chain 10 bugs together for reliable remote code execution without authentication
- Now: “one CVE per bug ID, unless a Linux distribution says they can fix one bug but not the other, and re-evaluate when new bugs are found while fixing the original bug” (oss-security mailing list)
- Now: “only a couple CVEs for this fuzzer with 1,000,000 tests where different tests affect different implementations with different codebases”
- Now: software vendor CNAs sometimes use their own method of counting
CVE Content Decisions – Lessons Learned

- Software development changes over time
- Disclosure practices change over time
- Vulnerability details change over time
- Researcher expertise changes over time
- CVE’s own expertise changes over time
- Perfect rules and consistency are not possible
 - CNAs will not / cannot always follow guidelines
- You won’t always get it right… but when you realize it, it can be too late
 - Too many people are already using the ID
 - Only SPLIT or MERGE post-disclosure in extreme situations

Sometimes have to allow CD violations if it’s best for users
- Example: CVE-2012-0217 is a class of implementation problems for Intel chips where each OS should have received its own CVE
Other CVE Lessons Learned

- There cannot be a perfect coordination ID scheme
- We made the right choice with a simple ID that did not encode taxonomy or semantics
 - Even the year isn’t ideal
- Getting the ID in the first public disclosure ensures that it is used everywhere
 - Otherwise, not everybody updates their mappings
 - But, early disclosure can mean imperfect abstraction
- The CVE ID **should not be used** as the primary ID for any other scheme
 - This rule should probably apply to any coordination ID
SECTION 3 – CVE ID MANAGEMENT
CVE ID Life Cycle

- Candidate Numbering Authority (CNA) reserves an ID pool
 - These IDs have a default description “** RESERVED **”
- CNAs assign a CVE ID to a specific issue(s)
- MITRE CNA privately reserves/assigns a CVE ID for non-CNAs
- If a CVE ID is assigned before disclosure
 - Advisory is published with reserved CVE
 - MITRE notices advisory
 - MITRE detects that a reserved ID is being used
 - MITRE changes description/references of the reserved CVE
- If a public disclosure has no CVE ID
 - MITRE is primary assigner (Red Hat handles oss-security)
 - MITRE notices advisory
 - MITRE reserves/assigns new CVE
Duplicate CVE ID Management

- http://cve.mitre.org/cve/editorial_policies/duplicates.html
- Duplicates happen when disclosure is not coordinated, or when CVE assignment is not coordinated
- The rate of CVE duplicates is around 0.5%
 - … but it FEELS much worse and is technically painful
- One CVE is kept, the other is REJECTed in description
 - Always leave a forward pointer to the correct ID
- Many complicated scenarios
 - One CVE has a description and one shows as “RESERVED”
 - When two CNAs publish separate IDs for the same issue
 - … especially in 0-day situations?
 - CVE number typos in advisories
 - What if multiple IDs are published for an issue from different products with the same shared code?
Multiple Types of “Vulnerability” IDs: The ABCs

- **Advisory ID**
 - MS12-067 (Microsoft), SA12345 (Secunia), …
 - No ID: Oracle, Cisco, …
 - HP (multiple IDs)
- **Bug ID (often “Vulnerability”)**
 - CERT-VU, JVN, Cisco Bug ID, OSVDB, …
 - Rarely used by researchers
- **Coordination ID** (counting must be usable by multiple perspectives)
 - CVE-xxxx-yyyy

- Many things have more than one ID
 - cars, computers, books, humans, …
- Each ID type serves different purposes and audiences
- One ID type can be used (poorly) for a different type of thing
Different Usage or Audience = Different IDs, Different Levels of Abstraction

Microsoft Security Bulletin
Cisco Advisory (title, but no ID)
Secunia SA

Advisory IDs

CVE-1
CVE-2
CVE-3

Coordination IDs

Cisco Bug IDs
CsC-1
CsC-2
CsC-3

Bug IDs
OSVDB-1
OSVDB-2
OSVDB-3

JVN ?
CVE Abstraction ("Counting") Versus Other Approaches

- CVE’s level of abstraction has evolved to be IN THE MIDDLE
 - The right place for a coordination ID
 - Most usable by the most people

- The content decisions rely on information that is usually stable, and often published early

- Challenges
 - Difficult to “count” correctly and consistently
 - Difficult to SPLIT or MERGE after initial publication
 - Abstraction choices are not always obvious or “natural;” they seek consistency across ALL vulnerabilities and disclosures, regardless of how much detail is available for an individual vulnerability
 - Abstraction choices are still affected by what information is available at the time of assignment – and that information can change
Primary ID for Each Market

- CVE encourages the distinction between:
 - Proprietary IDs associated with disclosures
 - i.e., advisory or bug IDs
 - Coordination IDs (like CVE) that can be used to cross-reference multiple disclosures from different sources

- CVE encourages identification & recognition of cross-reference (coordination) IDs within each GVR market
 - In markets where there are multiple disclosers (as is the case in the English-based market), CVE encourages the development of a coordination ID (similar to CVE)
 - In markets where disclosures are more centrally controlled, the coordination ID could be the ID scheme of that discloser
Single ID for GVR?

- CVE encourages a “go-slow” approach regarding any discussions of an ID scheme to be used for GVR
- Not yet clear:
 - which markets will be participating
 - if markets can define reasonable boundaries
 - how disclosure will work in various markets
 - if each market will have an organization that issues primary IDs
 - a primary ID issuing organization will appear in each market
 - how much coordination will be required among primary ID issuers
SECTION 4 – OTHER GVR CONSIDERATIONS
GVR Needs to be International

- GVR can only be addressed adequately in a forum in which:
 - Members have direct experience with vulnerability reporting, coordination, and response
 - There is real international representation

- CVE believes that FIRST is the most promising venue for productive GVR discussions
Disclosure Issues (in the English-based Market)

- In 2000 and earlier, vendors did not always fix vulnerabilities, which forced researchers to disclose without coordination.

- Best coverage demands tracking both vendor and independent sources:
 - No US regulations on software vendors requiring disclosure
 - Vendors almost never provide 100% coverage (due to low severity, unsupported products, lack of awareness)
 - No US law stopping independent disclosure (but laws or legal threats have had a chilling effect in multiple countries)

- No well established norms for vulnerability details:
 - CVE entry creation relies heavily on human analysis and often integrates details from multiple disclosures
 - Vendor details vary widely

- Proprietary IDs for initial disclosure simplify data gathering and tracking.
Reporting Trends: Volume Increasing?

- The global software base is growing fast
 - More lines of code
 - More software packages
 - More code sharing
 - More complex interactions between packages
- Vulnerability research quality/quantity is changing
Reporting Trends: Could Volume Decrease?

- Incentives for reporting are decreasing or shifting
 - Some vendors are providing less information
 - Government laws have had a noticeable effect
 - White, gray, and black market value for vulnerabilities suppresses or delays public disclosures
 - Auto-updates / silent updates
 - Vulnerabilities more difficult to find in solid software

- Will GVR be overwhelmed, go silent, or become tightly regulated?

- Will there be a fundamental shift from vulnerability tracking to patching? (but there are always 0-days)
Different Markets/Different Disclosures?

- CVE is a result of how disclosures happen in the English-based software market
 - Well established cultural attitudes favoring disclosure
 - No regulatory requirements on vendors to disclose
 - Mature software vendors typically disclose vulnerabilities to meet customer demand
 - Independent researchers often publish without coordination

- Disclosure practices may evolve differently in different markets
 - Different countries may impose different requirements on vendors relative to disclosure
 - Markets may have different cultural attitudes relative to access to vulnerability information
 - Vendors may respond to customer requests differently
 - Different customer demands for access to details
Unclear Evolution of Global Codebase

- Globalization affects amount of shared code around the globe
 - This affects the degree of coordination that will be needed among the different markets
 - Many English-based products use a shared codebase that is localized for non-English markets
 - There are increasing numbers of software products that are only present in their native language markets
 - Vulnerabilities generally won’t imply vulnerabilities in another market
Coordination and the Language Barrier

- JP-CERT is a CVE Candidate Numbering Authority (CNA):
 - JP-CERT has made extraordinary effort (for which we are grateful)
 - JP-CERT has been willing to work in English
 - MITRE cannot easily analyze reports written in Japanese

- Coordination across market/language boundaries will require language considerations similar to those seen in:
 - International business
 - Law enforcement

- More markets, more languages
Recognition of Multiple Language-based Markets

- CVE encourages recognizing and understanding multiple GVR markets
 - Native language is a central issue
 - National regulatory differences are another issue

- CVE encourages definition of these markets in terms of
 - Public, Internet-accessible sources of vulnerability information
 - (Most important) Vendors and products within that market

- CVE has begun this process already
Better Disclosures → Better Coordination, Better Coordination → Better Disclosures

- CVE encourages disclosers to use locally controlled (i.e. proprietary) IDs
 - Makes their repository of disclosures easier to reference

- CVE encourages disclosers to use cross-referencing (coordination) IDs that count vulnerabilities in similar ways
 - http://cve.mitre.org/cve/editorial_policies/cd_overview.html

- CVE encourages disclosers to publish their information in standardized formats and structures such as CVRF
 - http://www.icasi.org/cvrf

- CVE encourages disclosers to follow disclosure best practices – responsible/coordinated disclosure
 - Coordination produces higher-quality information
 - http://www.dhs.gov/xlibrary/assets/vdwgreport.pdf
QUESTIONS AND DISCUSSION
BACKUP SLIDES
Scope Issues

■ Original goal was “all publicly disclosed vulnerabilities”

■ Expansion of global software market has forced more concrete definition of scope
 – Full-coverage sources: Nearly all issues will get a CVE ID (assuming they should be included), regardless of the criticality.
 – Partial Coverage Sources: The source will be actively monitored but issues will be associated with CVE entries based on a variety of editorial judgments (e.g. criticality).
 – Must-have products: Will issue a CVE ID provided that:
 ■ a) The disclosure is published in at least one source that is listed as either "full coverage" or "partial coverage"
 ■ a) The disclosure is publicly associated with the product with a reasonably recognizable variant of the product name

■ MITRE CVE is now in position to define its scope within the larger GVR context
 – Full lists available on request
Vulnerability Advisory Publication and Practices (VAPP)

- Informal side project by Steve Christey (MITRE), Carsten Eiram (Secunia), Brian Martin (OSVDB)
 - Not public, but we can be convinced to finish it ;-

- What are the current practices? Vendors, researchers, coordinators

- What seems to work best for vulnerability databases (and their consumers)?

- Includes process
 - e.g., does vendor provide a security contact?
 - “Responsible disclosure” (a.k.a. “coordinated disclosure”) generally covers this

- Includes product
 - E.g., does the advisory contain an advisory ID, specify affected versions, etc.?
 - CVRF indirectly covers this