
Tracing Attacks on Advanced Persistent
Threats in Networked Systems

FIRST TC @ KYOTO
Kyoto 2012 FIRST Technical Colloquium
16:00-16:45, 14 November 2012
Kyoto City International Foundation Room 1&2

Hiroshi Koide
Kyushu Institute of Technology,
IPA

Demo or die
We introduce the demonstration of the prototyping of
simulation engine we are proposing first, because
we are thinking demonstration is the most important.

Proof of concept
implementation

 We are developing a prototype of the simulator engine to
analysis the behavior of malware on networks.

 We prepare sample networks. They are very simple at this time.
 Sample malware emulates behaviors of a part of Gamblar.

PC 3 PC 1 PC 2

192.168.0.3/24 192.168.0.4/24 192.168.0.5/24

Gateway

Private Network
192.168.0.0/24

Proxy
Server Firewall

192.168.0.1/24
192.168.0.2/24

192.168.1.2/24

192.168.1.1/24

Taint
Web Server

C&C
Server

192.168.2.1/24

192.168.2.3/24

192.168.2.4/24

192.168.2.5/24

Web
Server

DMZ
192.168.1.0/24

Global Network
192.168.2.0/24

PC1, PC2 and PC3 are user’s PC terminals.

IP datagrams go from these PC terminals
to outside through this proxy server.

There are two web servers.

C&C server is a command and control server.

Background

 Cyber attack methods are changing.
Defense is getting more and more difficult.
 DDoS attacks
 Web defacement
 APT（Advanced Persistent Threats）

 Information system structures are becoming

increasing complex and large in scale.
 It is difficult to get to know whether all

systems are operating correctly or not.
 Load balancer
 Cloud computing
 Overlay networks

recent

recent

APT/Background

 APT incidents are increasing. Many
organizations are attacked.
 Operation Aurora (2010)
 Night Dragon (2011)
 Operation Shady RAT (2011)

.. are sophisticated cyber attack examples.

A typical sequence of APT attack

Design and Operational Guide to Protect against “Advanced Persistent Threats” , IPA, 2011

First, an attacker investigates e-mail messages, addresses and other information in
preliminary cyber espionage.

A typical sequence of APT attack

Design and Operational Guide to Protect against “Advanced Persistent Threats” , IPA, 2011

And the attacker tries to invade one of PC terminals in the targeted system by using these
information.
At that time the attacker uses targeted e-mail containing remote control tools, RATs.

A typical sequence of APT attack

Design and Operational Guide to Protect against “Advanced Persistent Threats” , IPA, 2011

The attacker can control the PC from outside. And he or she collects confidential information
in the storage system of the organization.

Why is it difficult to protect ?
 Malware can pass through initial defense points. They can break

into the safety zone through the security boundary.
 Perimeter defense, FW/IPS, and endpoint protection, Anti-virus,

does not work well.
 Attackers search vulnerable servers and PCs and build an attack

infra-structure on it.
 The attack is delivered not from “outside” but from “inside.”

 When we design systems, we have to consider many kinds of

APT behaviors.
 System design is usually manually-produced.
 Default settings are often used. Designers do not know all functions.
 APT attack methods consist of many kinds of combinations of

several techniques and malwares.
 To enumerate all combination patterns is very difficult.

System designers believe FW/Anti-virus are enough to defend
systems.
There is poor access controls of “attacks from inside.”

Many characteristic features of
APT

 Many kinds of attack vectors and sequential
infections are used.

1. An e-mail attached with a virus are received

2. An user PC is infected

3. An AD server is infected

4. The target PC is infected

5. The confidential information is transmitted

 Targeted e-mail with a zero day attack is often
used

 Covert channels for RAT connections are build

 Many kinds of malware are used

 Long term persistence attacks … and so on

Design and Operational Guide to Protect against “Advanced Persistent Threats” , IPA, 2011

This is an example of a system which is manually produced. Attackers use many methods to
communicate between inside and outside.
The manually produced system design often makes easy attacks.

Next measures against APT

 We have to assume that there are not perfect
measures to prevent viruses invade into
networked systems.

 We have to prevent working of malware which
has invaded.

 We would like to design information systems in
which malware can not bring confidential data to
outside.

 We have to know the entire picture in the
networks

Outbound
defense

Basic Idea of our simulation

System status A State B2

State B3

State C2
y

State C4

State C3

State C5

z
State C1

parameter x

State B1
Malware behavior
description

Networked system
desciption

A lot of communication patterns !

x1

x2

SafeConfig 2012

 If an action is success and a next action is taken by
malware, communication state (protocol, destination
node..) is changed.

 And if this change is repeated, many states of
networked systems will be created.

Basic Idea of our simulation

 New communication path which should not be existing
essentially is produced by the malware.

 If an action is success and a next action is taken by
malware, communication state (protocol, destination
node..) is changed.

 This simulator searches the condition of creating path from
inside to outside as final condition.

 We can prevent design errors if we can use this simulator.

Networked system description

 There are many ways to describe networked
systems.
 NIST Net
 DummyNet
 NS2
 OPNET
 NetSim

 They are network emulators. The purposes and

abstraction levels are different from ours.
 We try to describe access control structures of

networked systems.
 We use NSQ model as an access control structure

description.

Programmers like easy to do

 Programmers ≒ Hackers

 easy to do ＝ to do efficiently
An example of programming

 DMA or punched card

 ed line editor

 vi screen editor

 emacs coutomizable and macro functions

 multi window system

 Integrated programming environments

We have obtained a lot of nice programming environments now
we can develop software efficiently.

Easy to do is justice.

Networked Systems

The characters on the networked system（Actors）

Routers, PC terminals, Firewalls, Switches, C&C servers
…

 Each hardware connected to the information
system.

Malware, Web server, Web browser, Proxy server, …

 Each software is executed on an equipment in
the networked system.

 The processing on each character is processing with
changing status and passing messages (datagrams)
with other characters.

 We would like to apply Actor model to this problem.

Actor model

 It is difficult to implement actor model on
ordinary programming languages like C or
Java.
 We have to realize

 Non-blocking message passing between actors

 A mechanism of actors

 Erlang and Scala have actor model as one of
fundamental functions.
 We choose Scala.

 Scala is more popular than Erlang.

 Erlang is too fundamental.

 Scala has high affinity with Java.

Programming Language Scala

 One of multi-paradigm programing languages which

mixtures object oriented programming languages

and functional programming languages.

 Scala has a lot of advanced functions. We can do

programming easily.

 one of Java platform (JVM) languages

 availability of plentiful Java libraries

 static typing programming language with advanced type

inference

 pattern matching

 Mix-in, multiple inheritance

 XML direct descriptions

 Actor lightweight process

The Base class of character in our simulator

Very simple. We can extend this base class to each character.
We can append some processes which respond to datagram by using “AddResponse.”

DSL for describing networked systems

 We have to simulate the behavior of malware in practical complicated
networks.

 We need to describe networks with appropriate level of abstraction, not too
fine and not coarse.

 NSQ model specification can be easily converted to XML network format.
 XML network format can be easily converted to DSL description which can

be executed directly as a Scala code.
 This network description also includes the information of all L5 applications

(web browser, server software), L3 routing and IP address.

object SampleNetwork extends MalwareSimulation {
 val net1 = Network “net1” 7.7.7.0/24
 val net2 = Nonetwork “net2” 6.6.6.0/24
 val node1 = Node “My PC” 7.7.7.1/24
 net1 addNode node1
 node1 addRoute default 7.7.7.2/24 net1
 val browser = WebBrowserApp
 browser setProxy 7.7.7.3/24
 node1 setApplication browser
 …

} Network description （NSQ XML -> DSL)

XML data of network
configuration

Network Simulator
GUI

NSQ model specification

DSL for describing APT malware
 Almost all malwares seemed to be coded by general purpose

programming languages.

 Behavior of malwares must be described easily, because they are
very complex and large quantities.

 The code which represents the behavior of malwares has to be
executed efficiently.

 We design DSL (Domain Specific Language)
 We can use the multi-inheritance function to describe new malware.

 Scala supports all modern functions of programming languages.

 The base class supplies the fundamental functions including discovery
targets, infection, update itself and so on to describe new malwares.

 We can accumulate the definitions of malware behavior as inheritance
relationships.

Fundamental
class of Malware

 Malware-001

 Malware-002

object NewMalware extends Malware {
 def init {/* Malware initialize routine */}
 def code {
 /* Malware main routine */
 targetNodes foreach { node => infect(node) }
 …

 }
 …

} Malware description （Malware-003)

Implementation of simulator prototype

Solver

Simulator Engine

result/
snapshots

condition

Hash
Table

Simulate behavior of malwares and
networks with a specific condition

To store snapshots of simulate
statuses from Simulator Engine

Drive the simulator engine to find a
solution with depth / breadth first order
search

 Simulator consists of two main modules

Implementation of simulator engine

Actors exchange datagrams according to defined

 routing tables and network topology.

Simulator Engine is implemented with actor model

Node

Application

Datagram

Utility

Router, Switching hub, PC terminal, Server

Firewall, various malwares, application software,
server software

IP Datagram emulated message
(This message is exchanging between actors.)

Routing table, Internet Address and so on.

A simulation result
malware(Malware, node=node(PC1, address=[192.168.0.3/24])): Malware takes action.

Malware[info/action/exit]:node(PC1, address=[192.168.0.3/24]): NetworkNode has to deliver a datagram
Datagram([192.168.0.3/24],10002,[192.168.0.2/24],8080,$$ Inportand Info.
$$,[192.168.0.3/24],[192.168.2.5/24])

malware(Malware, node=node(PC1, address=[192.168.0.3/24])): unknown command

network(private): Network received a data,
Datagram([192.168.0.3/24],10002,[192.168.0.2/24],8080,$$ Inportand Info.
$$,[192.168.0.1/24],[192.168.2.5/24])

node(Firewall, address=[192.168.0.1/24]): NetworkNode has to deliver a datagram
Datagram([192.168.0.3/24],10002,[192.168.0.2/24],8080,$$ Inportand Info.
$$,[192.168.0.1/24],[192.168.2.5/24])

<<snip>>

network(global): Network received a data, Datagram([192.168.0.2/24],10002,[192.168.2.5/24],80,$$ Inportand
Info. $$,[192.168.2.5/24],null)

node(Command and Control Server, address=[192.168.2.5/24]): NetworkNode has received a datagram
Datagram([192.168.0.2/24],10002,[192.168.2.5/24],80,$$ Inportand Info. $$,[192.168.2.5/24],null)

application(CCServer, node=node(Command and Control Server, address=[192.168.2.5/24])): Received a http
request.

node(Command and Control Server, address=[192.168.2.5/24]): NetworkNode has to deliver a datagram
Datagram([192.168.2.5/24],80,[192.168.0.2/24],10002,http response,null,<function1>)

network(global): Network received a data, Datagram([192.168.2.5/24],80,[192.168.0.2/24],10002,http
response,[192.168.2.1/24],<function1>)

node(Router, address=[192.168.2.1/24]): NetworkNode has to deliver a datagram
Datagram([192.168.2.5/24],80,[192.168.0.2/24],10002,http response,[192.168.2.1/24],<function1>)

<<snip>>

network(private): Network received a data, Datagram([192.168.2.5/24],80,[192.168.0.3/24],10002,http
response,[192.168.0.3/24],<function1>)

node(PC1, address=[192.168.0.3/24]): NetworkNode has received a datagram
Datagram([192.168.2.5/24],80,[192.168.0.3/24],10002,http response,[192.168.0.3/24],<function1>)

malware(Malware, node=node(PC1, address=[192.168.0.3/24])): success

We have demonstrated the simulator engine at the beginning of this presentation.

Work in progress and future
work

Work in progress
 Simulation on large scale networks
 More complicated attack patterns description
 Implementation of a prototype of simulation engine

Future work
 Implementation of the solver（dynamic simulation）
 Making data from real systems or existing design
 Considering how to use Mitre MAEC (Malware Attribute

Enumeration and Characterization)
 Considering how to use another network model
 Visualization for system designer (GUI)
 Parallel and distributed processing of the simulation

Concluding remarks

 Network system design is important to measure APT.

 Nowadays, networked systems and malware behaviors
are much more complex.

 Computer aided system design is needed and effective
to understand behavior of malwares using by APT.

 We developed two types of data model; networked
system and attack behavior.

 And we designed and implemented a prototype of
simulation engine.

 The proposed method is effective to design networked
systems.

 When we design networked systems correctly, the
defense against APT will be much easier.

Presentation

Kato, M., Matsunami, T., Kanaoka, A., Koide, H. and Okamoto,
E. : Tracing Attacks on Advanced Persistent Thread in
Networked Systems, The 21st USENIX Security Symposium
Poster Session, August 2012.

Kato, M., Matsunami, T., Kanaoka, A., Koide, H. and Okamoto,
E.: Tracing Advanced Threats in Networked Systems, SafeConfig,
October 2012.

