FFRI!
X

Kyoto, 2012 — FIRST Technical Colloquium
Smartphone Security and

Finding “Third-party” Risks

Fourteenforty Research Institute, Inc.
http://www.fourteenforty,jp

Tsukasa Oi — Research Engineer




Self Introduction

« Fourteenforty Research Institute, Inc. (FFRI)
— Tokyo, Japan
— R&D in the field of computer security

« Tsukasa Oi : Research Engineer at FFRI
— Currently focusing on mobile security

— Recent Talks at:

« PacSec 2011
“How Security Broken?”

« Black Hat Abu Dhabi 2011
"Yet Another Android Rootkit /protecting/system/is/not/enough/"

« Black Hat USA 2012
"Windows Phone 7 Internals and Exploitability”



Background

« Modern mobile operating systems
— Sandbox to protect system and applications
— Some kind of MAC (Mandatory Access Control)

— Integrated application distribution
(App Stores)

« Modifications by Third-party Vendors
— Android
— Windows Phone (7.x)




Agenda

Security Design
— Android
— Windows Phone 7

Risks and Vulnerabilities
— What we find

Third-Party Risks and Vulnerabilities
— Remote DoS

— Privilege Escalation

— Access Control Vulnerability

Finding Vulnerabilities



Caution!

We cannot disclose many of vulnerabilities we've found




It looks pretty good. But is it enough then?

SECURITY DESIGN




Android : Permission

« Restrict access to specific resources
— Need declaration to use specific features
« Sensor data / Camera
» Location
« Access to system resources
— Special GID or software checks

— Some permissions are restricted for system apps
(like INSTALL_PACKAGE; allows unattended installation)

« Checks by package location / signature




FFRI

Android : Permission Checks (1)

Caller Application gl Application Metadata

A
1
IPC (through Binder) E
1

System Service Activity Manager

Package Manager

« Service Manager (or important method) checks callers permission

— Achieve good isolation
(IPC glue is automatically-generated)



Android : Permission Checks (2)

Normal Case “Internet” Case

android.permission.READ_LOGS android.permission.INTERNET

GID: 1007
(log)

GID: 3003
(inet)

Application Application

Kernel

POSIX permissions Specific checks

for Android”

« Some permissions are associated with specific GIDs
— Use POSIX permission checks except “Internet” permission

* Linux kernel for Android is modified to restrict Internet sockets to processes which have GID 3003 (inet).



FFR{
Android : Isolation

« One UID for One App
— Unless apps by same developer declare to share UID

— No apps can access other apps data unless
its permission is world-accessible

 Vulnerability in Skype for Android (CVE-2011-1717)

« Read-only access to some system resources

— e.g. Data in SD card
(will require READ_EXTERNAL_STORAGE permission in the future)

— e.g. /data/system/packages.list
(which enables to access package list without permission)



FFR{
Android : Additional Security by Vendor

« Some vendors add security layer to avoid issues

— NAND protection
protect system partition of flash will not be overwritten

— LSM (Linux Security Modules); except SEAndroid
prohibit dangerous operations from being performed

— Better security controls
(e.g. 3LM Security)

« Some of them can be effectively broken

— "Yet Another Android Rootkit /protecting/system/is/not/enough/"
Black Hat Abu Dhabi 2011




Windows Phone 7 : Capability

« Restrict access like Android’s permission system
— Fewer (and simple) capabilities

« Specific SID for capability

« Special Capabilities for limited apps

— Some capabilities are not allowed for distribution
(without explicit permission by Microsoft)

— Use OEM's interop service (ID_CAP_INTEROPSERVICES)




Windows Phone 7 : Isolation

« One Chamber for One App

— Windows Phone 7 creates “chamber”
to isolate application data and program

« Almost no access to system resources
— Normal developers can run only managed (.NET) code

« Only few developers are allowed to run native code
(with WPInteropManifest.xml in the package)

— Almost no apps can access other apps data




Windows Phone 7 : Isolation Detailed

Launch App

Package Manager

Shell (telshell.exe) AN Apps (TaskHost.exe)

(pacman*.dll)

Query Apps
Check if App Allowed
Kernel
Policy Engine Security Loader

(PolicyEngine.dll) (lvmod.dll)
_ o Access Control Prevent untrusted
Running applications (sandbox) files to be loaded

(related components)

e Executable modules and resources are restricted



Conclusion

« Although there are some small “flaws”,
these OS protect system from being compromised




In other words : what we always find

RISKS AND VULNERABILITIES




What we find : Access Control Vulnerability

« Access to resources which is not allowed (normally)

— The risk of vulnerability will vary on the resource
we can access using exploits

— Critical one may lead to privilege escalation




What we find : Privilege Escalation

« Make malicious program to run on higher privileges
— Normal users to System user

« “system” user in Android is allowed to
use almost all system privileges and resources

« This may lead to complete compromise
— System user to Administrative user
« Gaining “root” privilege
— Keep admin privileges
« Modify and infect the system permanently
 This is complete compromise



What kind of vulnerability third-party made?

THIRD-PARTY RISKS




FFR{
Android : Remote DoS Vulnerability

« "Data Wipe" vulnerability in Samsung and HTC devices
— Clicking "tel:..." URL triggers “data wipe" feature

— Special phone numbers (which trigger specific event)
are not handled correctly

« Demonstrated by IMEI display (“*#06#" from remote)

« Denial of Service (force-to-reboot) vulnerability in
various Android devices (Sharp, Fujitsu-Toshiba, NEC-Casio...)

— Similar example on a Japanese smartphone we've found

— Clicking specific URL (more specifically, calling read system
call for special location) triggers kernel panic and forces device to
reboot

Reference:
http://www.guardian.co.uk/technoloqy/2012/sep/27/samsung-htc-phones-remote-wipe



http://www.guardian.co.uk/technology/2012/sep/27/samsung-htc-phones-remote-wipe
http://www.guardian.co.uk/technology/2012/sep/27/samsung-htc-phones-remote-wipe
http://www.guardian.co.uk/technology/2012/sep/27/samsung-htc-phones-remote-wipe
http://www.guardian.co.uk/technology/2012/sep/27/samsung-htc-phones-remote-wipe
http://www.guardian.co.uk/technology/2012/sep/27/samsung-htc-phones-remote-wipe
http://www.guardian.co.uk/technology/2012/sep/27/samsung-htc-phones-remote-wipe
http://www.guardian.co.uk/technology/2012/sep/27/samsung-htc-phones-remote-wipe
http://www.guardian.co.uk/technology/2012/sep/27/samsung-htc-phones-remote-wipe
http://www.guardian.co.uk/technology/2012/sep/27/samsung-htc-phones-remote-wipe
http://www.guardian.co.uk/technology/2012/sep/27/samsung-htc-phones-remote-wipe

Android : Privilege Escalation Vulnerability

« ACER Iconia Tab / Motorola Xoom OS Command Injection
— "/system/bin/cmdclient” setuid (and world-executable) program
— Ability to run any command in root privilege

Reference:
http://forum.xda-developers.com/showthread.php?t=1138228 (ACER Iconia Tab A500)

http://www.xoomforums.com/forum/motorola-xoom-development/12997-rooting-family-
edition.html (Motorola Xoom FE)



http://forum.xda-developers.com/showthread.php?t=1138228
http://forum.xda-developers.com/showthread.php?t=1138228
http://forum.xda-developers.com/showthread.php?t=1138228
http://forum.xda-developers.com/showthread.php?t=1138228
http://www.xoomforums.com/forum/motorola-xoom-development/12997-rooting-family-edition.html
http://www.xoomforums.com/forum/motorola-xoom-development/12997-rooting-family-edition.html
http://www.xoomforums.com/forum/motorola-xoom-development/12997-rooting-family-edition.html
http://www.xoomforums.com/forum/motorola-xoom-development/12997-rooting-family-edition.html
http://www.xoomforums.com/forum/motorola-xoom-development/12997-rooting-family-edition.html
http://www.xoomforums.com/forum/motorola-xoom-development/12997-rooting-family-edition.html
http://www.xoomforums.com/forum/motorola-xoom-development/12997-rooting-family-edition.html
http://www.xoomforums.com/forum/motorola-xoom-development/12997-rooting-family-edition.html
http://www.xoomforums.com/forum/motorola-xoom-development/12997-rooting-family-edition.html
http://www.xoomforums.com/forum/motorola-xoom-development/12997-rooting-family-edition.html
http://www.xoomforums.com/forum/motorola-xoom-development/12997-rooting-family-edition.html
http://www.xoomforums.com/forum/motorola-xoom-development/12997-rooting-family-edition.html

Android : Access Control Vulnerability

« ZTE Root Shell Vulnerability
— "/system/bin/sync_agent” setuid (and world-executable) program
— Ability to run a root shell with a hard coded password

Reference:
http://blog.mobiledefense.com/2012/05/zte-root-shell-vulnerability/



http://blog.mobiledefense.com/2012/05/zte-root-shell-vulnerability/
http://blog.mobiledefense.com/2012/05/zte-root-shell-vulnerability/
http://blog.mobiledefense.com/2012/05/zte-root-shell-vulnerability/
http://blog.mobiledefense.com/2012/05/zte-root-shell-vulnerability/
http://blog.mobiledefense.com/2012/05/zte-root-shell-vulnerability/
http://blog.mobiledefense.com/2012/05/zte-root-shell-vulnerability/
http://blog.mobiledefense.com/2012/05/zte-root-shell-vulnerability/
http://blog.mobiledefense.com/2012/05/zte-root-shell-vulnerability/

FFR{
Windows Phone 7 : Vulnerability

« Heap overflow vulnerability in [not disclosed yet]
— CVE-2005-2096 (vulnerability in zlib -1.2.2)

— This showed us Windows Phone 7 apps are not vuln-free
(such native vulnerabilities can be found)

« Risks of Exploitation

— If a vulnerable native app has “Interop Services”
capability, it can cause disaster (ID_CAP_INTEROPSERVICES)

— Otherwise it's not much help for bypassing sandbox

« Just taking control may be not enough for
system compromise (because of strong isolation)

« Fortunately, [not disclosed] didn't have one



FFR{
Windows Phone 7/ : Design Flaw

« Some Windows Phone 7 devices have “"backdoor”
interop services which enables access resources in many regions

— Files
— Regqistry
— Physical RAM (?!)
« These services can be accessed from apps with
ID_CAP_INTEROPSERVICES capability
— There are some non-OEM native apps
(which can access all interop services)
« Microsoft should have been separated such services

— If an application need an interop service,
all interop services will be permitted

Reference: http://labs.mwrinfosecurity.com/assets/128/mwri wp7-bluehat-technical 2011-11-08.pdf



http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf

It was not so difficult.

FINDING VULNERABILITIES




General : Find Similar Hacks

« If device A have been hacked by others, device B
(which has similar configuration) may have similar vulnerability

— Same/Similar chipset

— Same/Similar vendor




General : Focus on “System” interface

« Original system interface may be disaster
— Buffer overflow
— Directory traversal
— Improper access to file system

« Using...
— IDA Pro to figure out what interface the device has
— Custom tools to exploit (or try to exploit)




Android : Diffing source tree

« Applicable for GPL/LGPL portions
— Diffing between original source code and vendor one

— AOSP and some vendors (like Qualcomm) serves git
repository and makes diffing easier

« Download every history by cloning git repository and
compare each commits to find neighborhood

« Take a complete diff and investigate “vendor” parts

« 1.3GB total for “Android” Linux kernel trees and
thousands of appropriate commits

— It may require optimization for diffing
(if you don’t know which chipset the device uses)



FFR{
Android : Diffing files and directories

« Access all the files and directories which we can access
— Just doing this can reveal vulnerability

« Find "third-party” daemons
— This will help efficient reverse engineering

« Disassemble/Decompile important programs and extract
path information (to figure out)

— Some locations which have “improper access” are difficult
to find without reverse engineering




Android : Modules to load

« Check which module is loaded
and make sure the way to load module is secure

— If the module is loaded insecurely,
we could “insert” module to be loaded

— Symbolic link may help
(many programs cannot handle symbolic links correctly)




Windows Phone 7 : Updates

« Windows Phone 7 updates are completely separated between
Microsoft updates and OEM updates

— Downloading OEM updates will make reverse engineering
very easy (no need to “jailbreak” real device!)

— *.cab.pkg (CAB files) : Separate update package

« Package file is a gold mine of reverse engineering
- *rgu: Registry file (driver information, configurations...)
— *.policy.xml : Policy XML (used for access control)
— *dll, *.exe: Drivers / PE files (to disassemble)




FFR{
Windows Phone 7 : Symbols

« System symbols for Windows Phone 7

— If you can retrieve WP7 system binaries (e.g. extract ROM),
you can download the symbols from well-known URL
<http://msdl.microsoft.com/download/symbols>

— Loading symbols may break IDA Pro but can be fixed:
« Start analyzing module without loading symbols
« Save “Thumb” functions
« Load symbols

« For each "Thumb” functions, restore register “T".
(to make functions really “Thumb” again)

« Reanalyze module from options menu



http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols

So, what is the problem?

CONCLUSION




Problems of third-party vulnerabilities

May not be easy to know
— Many zero-days

May not be fixed so fast
— Varying on vendors
— May be same on “common” Android vulnerabilities

May be easy to exploit
— If the third-party vendor didn’t properly design security

Definitely easy to find
— Find vulnerability from 1 million lines or 1 thousand lines



Conclusion

« Vulnerability made by third-party modification may be disaster

« There are some points to find such vulnerabilities

« Vendors must consider security design




Thanks!

FIFR
X

Fourteenforty Research Institute, Inc.
http://www.fourteenforty.jp

Tsukasa Oi — Research Engineer
<oi@fourteenforty,jp>



mailto:oi@fourteenforty.jp

