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• Fourteenforty Research Institute, Inc. (FFRI) 

– Tokyo, Japan 

– R&D in the field of computer security 

• Tsukasa Oi : Research Engineer at FFRI 

– Currently focusing on mobile security 

– Recent Talks at: 

• PacSec 2011 

“How Security Broken?” 

• Black Hat Abu Dhabi 2011 

“Yet Another Android Rootkit /protecting/system/is/not/enough/” 

• Black Hat USA 2012 

“Windows Phone 7 Internals and Exploitability” 

Self Introduction 
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• Modern mobile operating systems 

– Sandbox to protect system and applications 

– Some kind of MAC (Mandatory Access Control) 

– Integrated application distribution 

(App Stores) 

• Modifications by Third-party Vendors 

– Android 

– Windows Phone (7.x) 

Background 

3 



Fourteenforty Research Institute, Inc. 

 

• Security Design 

– Android 

– Windows Phone 7 

• Risks and Vulnerabilities 

– What we find 

• Third-Party Risks and Vulnerabilities 

– Remote DoS 

– Privilege Escalation 

– Access Control Vulnerability 

• Finding Vulnerabilities 

Agenda 
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We cannot disclose many of vulnerabilities we’ve found 

Caution! 
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SECURITY DESIGN 

It looks pretty good. But is it enough then? 
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• Restrict access to specific resources 

– Need declaration to use specific features 

• Sensor data / Camera 

• Location 

• Access to system resources 

– Special GID or software checks 

– Some permissions are restricted for system apps 

(like INSTALL_PACKAGE; allows unattended installation) 

• Checks by package location / signature 

Android : Permission 
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• Service Manager (or important method) checks callers permission 

– Achieve good isolation 

(IPC glue is automatically-generated) 

Android : Permission Checks (1) 
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IPC (through Binder) 

Caller Application 

System Service 
Activity Manager 

Package Manager 

Application Metadata 



Fourteenforty Research Institute, Inc. 

 

• Some permissions are associated with specific GIDs 

– Use POSIX permission checks except “Internet” permission 

Android : Permission Checks (2) 

9 

GID: 1007 

(log) 

GID: 3003 

(inet) 

Kernel 

Application Application 

POSIX permissions 
Specific checks 

for Android* 

android.permission.INTERNET android.permission.READ_LOGS 

Normal Case “Internet” Case 

* Linux kernel for Android is modified to restrict Internet sockets to processes which have GID 3003 (inet). 
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• One UID for One App 

– Unless apps by same developer declare to share UID 

– No apps can access other apps data unless 

its permission is world-accessible 

• Vulnerability in Skype for Android (CVE-2011-1717) 

• Read-only access to some system resources 

– e.g. Data in SD card 

(will require READ_EXTERNAL_STORAGE permission in the future) 

– e.g. /data/system/packages.list 

(which enables to access package list without permission) 

Android : Isolation 
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• Some vendors add security layer to avoid issues 

– NAND protection 

protect system partition of flash will not be overwritten 

– LSM (Linux Security Modules); except SEAndroid 

prohibit dangerous operations from being performed 

– Better security controls 

(e.g. 3LM Security) 

• Some of them can be effectively broken 

– “Yet Another Android Rootkit /protecting/system/is/not/enough/” 

Black Hat Abu Dhabi 2011 

Android : Additional Security by Vendor 
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• Restrict access like Android’s permission system 

– Fewer (and simple) capabilities 

• Specific SID for capability 

• Special Capabilities for limited apps 

– Some capabilities are not allowed for distribution 

(without explicit permission by Microsoft) 

– Use OEM’s interop service (ID_CAP_INTEROPSERVICES) 

Windows Phone 7 : Capability 
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• One Chamber for One App 

– Windows Phone 7 creates “chamber” 

to isolate application data and program 

• Almost no access to system resources 

– Normal developers can run only managed (.NET) code 

• Only few developers are allowed to run native code 

(with WPInteropManifest.xml in the package) 

– Almost no apps can access other apps data 

Windows Phone 7 : Isolation 
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• Executable modules and resources are restricted 

Windows Phone 7 : Isolation Detailed 
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Kernel 
Policy Engine 

(PolicyEngine.dll) 

Package Manager 

(pacman*.dll) 

Security Loader 

(lvmod.dll) 

Shell (telshell.exe) 

Query Apps 

Check if App Allowed 

Apps (TaskHost.exe) 

Launch App 

Access Control 

(sandbox) 

Prevent untrusted 

files to be loaded Running applications 

(related components) 
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• Although there are some small “flaws”, 

these OS protect system from being compromised 

Conclusion 
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RISKS AND VULNERABILITIES 

In other words : what we always find 
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• Access to resources which is not allowed (normally) 

– The risk of vulnerability will vary on the resource 

we can access using exploits 

– Critical one may lead to privilege escalation 

What we find : Access Control Vulnerability 
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• Make malicious program to run on higher privileges 

– Normal users to System user 

• “system” user in Android is allowed to 

use almost all system privileges and resources 

• This may lead to complete compromise 

– System user to Administrative user 

• Gaining “root” privilege 

– Keep admin privileges 

• Modify and infect the system permanently 

• This is complete compromise 

What we find : Privilege Escalation 
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THIRD-PARTY RISKS 

What kind of vulnerability third-party made? 
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• “Data Wipe” vulnerability in Samsung and HTC devices 

– Clicking “tel:…” URL triggers “data wipe” feature 

– Special phone numbers (which trigger specific event) 

are not handled correctly 

• Demonstrated by IMEI display (“*#06#” from remote) 

• Denial of Service (force-to-reboot) vulnerability in 

various Android devices (Sharp, Fujitsu-Toshiba, NEC-Casio…) 

– Similar example on a Japanese smartphone we’ve found 

– Clicking specific URL (more specifically, calling read system 

call for special location) triggers kernel panic and forces device to 

reboot 

Android : Remote DoS Vulnerability 
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Reference: 

http://www.guardian.co.uk/technology/2012/sep/27/samsung-htc-phones-remote-wipe 
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• ACER Iconia Tab / Motorola Xoom OS Command Injection 

– “/system/bin/cmdclient” setuid (and world-executable) program 

– Ability to run any command in root privilege 

Android : Privilege Escalation Vulnerability 
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Reference: 

http://forum.xda-developers.com/showthread.php?t=1138228 (ACER Iconia Tab A500) 

http://www.xoomforums.com/forum/motorola-xoom-development/12997-rooting-family-

edition.html (Motorola Xoom FE) 
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• ZTE Root Shell Vulnerability 

– “/system/bin/sync_agent” setuid (and world-executable) program 

– Ability to run a root shell with a hard coded password 

Android : Access Control Vulnerability 
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Reference: 

http://blog.mobiledefense.com/2012/05/zte-root-shell-vulnerability/ 
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• Heap overflow vulnerability in [not disclosed yet] 

– CVE-2005-2096 (vulnerability in zlib -1.2.2) 

– This showed us Windows Phone 7 apps are not vuln-free 

(such native vulnerabilities can be found) 

• Risks of Exploitation 

– If a vulnerable native app has “Interop Services” 

capability, it can cause disaster (ID_CAP_INTEROPSERVICES) 

– Otherwise it’s not much help for bypassing sandbox 

• Just taking control may be not enough for 

system compromise (because of strong isolation) 

• Fortunately, [not disclosed] didn’t have one 

Windows Phone 7 : Vulnerability 
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• Some Windows Phone 7 devices have “backdoor” 

interop services which enables access resources in many regions 

– Files 

– Registry 

– Physical RAM (?!) 

• These services can be accessed from apps with 

ID_CAP_INTEROPSERVICES capability 

– There are some non-OEM native apps 

(which can access all interop services) 

• Microsoft should have been separated such services 

– If an application need an interop service, 

all interop services will be permitted 

Windows Phone 7 : Design Flaw 
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Reference: http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf  

http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf


Fourteenforty Research Institute, Inc. 

 

FINDING VULNERABILITIES 

It was not so difficult. 
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• If device A have been hacked by others, device B 

(which has similar configuration) may have similar vulnerability 

– Same/Similar chipset 

– Same/Similar vendor 

General : Find Similar Hacks 
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• Original system interface may be disaster 

– Buffer overflow 

– Directory traversal 

– Improper access to file system 

• Using… 

– IDA Pro to figure out what interface the device has 

– Custom tools to exploit (or try to exploit) 

General : Focus on “System” interface 
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• Applicable for GPL/LGPL portions 

– Diffing between original source code and vendor one 

– AOSP and some vendors (like Qualcomm) serves git 

repository and makes diffing easier 

• Download every history by cloning git repository and 

compare each commits to find neighborhood 

• Take a complete diff and investigate “vendor” parts 

• 1.3GB total for “Android” Linux kernel trees and 

thousands of appropriate commits 

– It may require optimization for diffing 

(if you don’t know which chipset the device uses) 

Android : Diffing source tree 
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• Access all the files and directories which we can access 

– Just doing this can reveal vulnerability 

• Find “third-party” daemons 

– This will help efficient reverse engineering 

• Disassemble/Decompile important programs and extract 

path information (to figure out) 

– Some locations which have “improper access” are difficult 

to find without reverse engineering 

Android : Diffing files and directories 
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• Check which module is loaded 

and make sure the way to load module is secure 

– If the module is loaded insecurely, 

we could “insert” module to be loaded 

– Symbolic link may help 

(many programs cannot handle symbolic links correctly) 

Android : Modules to load 
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• Windows Phone 7 updates are completely separated between 

Microsoft updates and OEM updates 

– Downloading OEM updates will make reverse engineering 

very easy (no need to “jailbreak” real device!) 

– *.cab.pkg (CAB files) : Separate update package 

• Package file is a gold mine of reverse engineering 

– *.rgu : Registry file (driver information, configurations…) 

– *.policy.xml : Policy XML (used for access control) 

– *.dll, *.exe : Drivers / PE files (to disassemble) 

Windows Phone 7 : Updates 
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• System symbols for Windows Phone 7 

– If you can retrieve WP7 system binaries (e.g. extract ROM), 

you can download the symbols from well-known URL 

<http://msdl.microsoft.com/download/symbols> 

– Loading symbols may break IDA Pro but can be fixed: 

• Start analyzing module without loading symbols 

• Save “Thumb” functions 

• Load symbols 

• For each “Thumb” functions, restore register “T”. 

(to make functions really “Thumb” again) 

• Reanalyze module from options menu 

Windows Phone 7 : Symbols 
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CONCLUSION 

So, what is the problem? 
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• May not be easy to know 

– Many zero-days 

• May not be fixed so fast 

– Varying on vendors 

– May be same on “common” Android vulnerabilities 

• May be easy to exploit 

– If the third-party vendor didn’t properly design security 

• Definitely easy to find 

– Find vulnerability from 1 million lines or 1 thousand lines 

Problems of third-party vulnerabilities 
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• Vulnerability made by third-party modification may be disaster 

• There are some points to find such vulnerabilities 

• Vendors must consider security design 

Conclusion 
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Thanks! 
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