
Fourteenforty Research Institute, Inc. 

 

1 

Kyoto, 2012 – FIRST Technical Colloquium 

Smartphone Security and 

Finding “Third-party” Risks 

Fourteenforty Research Institute, Inc. 
http://www.fourteenforty.jp 

 

Tsukasa Oi – Research Engineer 



Fourteenforty Research Institute, Inc. 

 

• Fourteenforty Research Institute, Inc. (FFRI) 

– Tokyo, Japan 

– R&D in the field of computer security 

• Tsukasa Oi : Research Engineer at FFRI 

– Currently focusing on mobile security 

– Recent Talks at: 

• PacSec 2011 

“How Security Broken?” 

• Black Hat Abu Dhabi 2011 

“Yet Another Android Rootkit /protecting/system/is/not/enough/” 

• Black Hat USA 2012 

“Windows Phone 7 Internals and Exploitability” 

Self Introduction 

2 



Fourteenforty Research Institute, Inc. 

 

• Modern mobile operating systems 

– Sandbox to protect system and applications 

– Some kind of MAC (Mandatory Access Control) 

– Integrated application distribution 

(App Stores) 

• Modifications by Third-party Vendors 

– Android 

– Windows Phone (7.x) 

Background 

3 



Fourteenforty Research Institute, Inc. 

 

• Security Design 

– Android 

– Windows Phone 7 

• Risks and Vulnerabilities 

– What we find 

• Third-Party Risks and Vulnerabilities 

– Remote DoS 

– Privilege Escalation 

– Access Control Vulnerability 

• Finding Vulnerabilities 

Agenda 

4 



Fourteenforty Research Institute, Inc. 

 

We cannot disclose many of vulnerabilities we’ve found 

Caution! 

5 



Fourteenforty Research Institute, Inc. 

 

SECURITY DESIGN 

It looks pretty good. But is it enough then? 

6 



Fourteenforty Research Institute, Inc. 

 

• Restrict access to specific resources 

– Need declaration to use specific features 

• Sensor data / Camera 

• Location 

• Access to system resources 

– Special GID or software checks 

– Some permissions are restricted for system apps 

(like INSTALL_PACKAGE; allows unattended installation) 

• Checks by package location / signature 

Android : Permission 

7 



Fourteenforty Research Institute, Inc. 

 

• Service Manager (or important method) checks callers permission 

– Achieve good isolation 

(IPC glue is automatically-generated) 

Android : Permission Checks (1) 

8 

IPC (through Binder) 

Caller Application 

System Service 
Activity Manager 

Package Manager 

Application Metadata 



Fourteenforty Research Institute, Inc. 

 

• Some permissions are associated with specific GIDs 

– Use POSIX permission checks except “Internet” permission 

Android : Permission Checks (2) 

9 

GID: 1007 

(log) 

GID: 3003 

(inet) 

Kernel 

Application Application 

POSIX permissions 
Specific checks 

for Android* 

android.permission.INTERNET android.permission.READ_LOGS 

Normal Case “Internet” Case 

* Linux kernel for Android is modified to restrict Internet sockets to processes which have GID 3003 (inet). 



Fourteenforty Research Institute, Inc. 

 

• One UID for One App 

– Unless apps by same developer declare to share UID 

– No apps can access other apps data unless 

its permission is world-accessible 

• Vulnerability in Skype for Android (CVE-2011-1717) 

• Read-only access to some system resources 

– e.g. Data in SD card 

(will require READ_EXTERNAL_STORAGE permission in the future) 

– e.g. /data/system/packages.list 

(which enables to access package list without permission) 

Android : Isolation 

10 



Fourteenforty Research Institute, Inc. 

 

• Some vendors add security layer to avoid issues 

– NAND protection 

protect system partition of flash will not be overwritten 

– LSM (Linux Security Modules); except SEAndroid 

prohibit dangerous operations from being performed 

– Better security controls 

(e.g. 3LM Security) 

• Some of them can be effectively broken 

– “Yet Another Android Rootkit /protecting/system/is/not/enough/” 

Black Hat Abu Dhabi 2011 

Android : Additional Security by Vendor 

11 



Fourteenforty Research Institute, Inc. 

 

• Restrict access like Android’s permission system 

– Fewer (and simple) capabilities 

• Specific SID for capability 

• Special Capabilities for limited apps 

– Some capabilities are not allowed for distribution 

(without explicit permission by Microsoft) 

– Use OEM’s interop service (ID_CAP_INTEROPSERVICES) 

Windows Phone 7 : Capability 

12 



Fourteenforty Research Institute, Inc. 

 

• One Chamber for One App 

– Windows Phone 7 creates “chamber” 

to isolate application data and program 

• Almost no access to system resources 

– Normal developers can run only managed (.NET) code 

• Only few developers are allowed to run native code 

(with WPInteropManifest.xml in the package) 

– Almost no apps can access other apps data 

Windows Phone 7 : Isolation 

13 



Fourteenforty Research Institute, Inc. 

 

• Executable modules and resources are restricted 

Windows Phone 7 : Isolation Detailed 

14 

Kernel 
Policy Engine 

(PolicyEngine.dll) 

Package Manager 

(pacman*.dll) 

Security Loader 

(lvmod.dll) 

Shell (telshell.exe) 

Query Apps 

Check if App Allowed 

Apps (TaskHost.exe) 

Launch App 

Access Control 

(sandbox) 

Prevent untrusted 

files to be loaded Running applications 

(related components) 



Fourteenforty Research Institute, Inc. 

 

• Although there are some small “flaws”, 

these OS protect system from being compromised 

Conclusion 

15 



Fourteenforty Research Institute, Inc. 

 

RISKS AND VULNERABILITIES 

In other words : what we always find 

16 



Fourteenforty Research Institute, Inc. 

 

• Access to resources which is not allowed (normally) 

– The risk of vulnerability will vary on the resource 

we can access using exploits 

– Critical one may lead to privilege escalation 

What we find : Access Control Vulnerability 

17 



Fourteenforty Research Institute, Inc. 

 

• Make malicious program to run on higher privileges 

– Normal users to System user 

• “system” user in Android is allowed to 

use almost all system privileges and resources 

• This may lead to complete compromise 

– System user to Administrative user 

• Gaining “root” privilege 

– Keep admin privileges 

• Modify and infect the system permanently 

• This is complete compromise 

What we find : Privilege Escalation 

18 



Fourteenforty Research Institute, Inc. 

 

THIRD-PARTY RISKS 

What kind of vulnerability third-party made? 

19 



Fourteenforty Research Institute, Inc. 

 

• “Data Wipe” vulnerability in Samsung and HTC devices 

– Clicking “tel:…” URL triggers “data wipe” feature 

– Special phone numbers (which trigger specific event) 

are not handled correctly 

• Demonstrated by IMEI display (“*#06#” from remote) 

• Denial of Service (force-to-reboot) vulnerability in 

various Android devices (Sharp, Fujitsu-Toshiba, NEC-Casio…) 

– Similar example on a Japanese smartphone we’ve found 

– Clicking specific URL (more specifically, calling read system 

call for special location) triggers kernel panic and forces device to 

reboot 

Android : Remote DoS Vulnerability 

20 

Reference: 

http://www.guardian.co.uk/technology/2012/sep/27/samsung-htc-phones-remote-wipe 

http://www.guardian.co.uk/technology/2012/sep/27/samsung-htc-phones-remote-wipe
http://www.guardian.co.uk/technology/2012/sep/27/samsung-htc-phones-remote-wipe
http://www.guardian.co.uk/technology/2012/sep/27/samsung-htc-phones-remote-wipe
http://www.guardian.co.uk/technology/2012/sep/27/samsung-htc-phones-remote-wipe
http://www.guardian.co.uk/technology/2012/sep/27/samsung-htc-phones-remote-wipe
http://www.guardian.co.uk/technology/2012/sep/27/samsung-htc-phones-remote-wipe
http://www.guardian.co.uk/technology/2012/sep/27/samsung-htc-phones-remote-wipe
http://www.guardian.co.uk/technology/2012/sep/27/samsung-htc-phones-remote-wipe
http://www.guardian.co.uk/technology/2012/sep/27/samsung-htc-phones-remote-wipe
http://www.guardian.co.uk/technology/2012/sep/27/samsung-htc-phones-remote-wipe


Fourteenforty Research Institute, Inc. 

 

• ACER Iconia Tab / Motorola Xoom OS Command Injection 

– “/system/bin/cmdclient” setuid (and world-executable) program 

– Ability to run any command in root privilege 

Android : Privilege Escalation Vulnerability 

21 

Reference: 

http://forum.xda-developers.com/showthread.php?t=1138228 (ACER Iconia Tab A500) 

http://www.xoomforums.com/forum/motorola-xoom-development/12997-rooting-family-

edition.html (Motorola Xoom FE) 

http://forum.xda-developers.com/showthread.php?t=1138228
http://forum.xda-developers.com/showthread.php?t=1138228
http://forum.xda-developers.com/showthread.php?t=1138228
http://forum.xda-developers.com/showthread.php?t=1138228
http://www.xoomforums.com/forum/motorola-xoom-development/12997-rooting-family-edition.html
http://www.xoomforums.com/forum/motorola-xoom-development/12997-rooting-family-edition.html
http://www.xoomforums.com/forum/motorola-xoom-development/12997-rooting-family-edition.html
http://www.xoomforums.com/forum/motorola-xoom-development/12997-rooting-family-edition.html
http://www.xoomforums.com/forum/motorola-xoom-development/12997-rooting-family-edition.html
http://www.xoomforums.com/forum/motorola-xoom-development/12997-rooting-family-edition.html
http://www.xoomforums.com/forum/motorola-xoom-development/12997-rooting-family-edition.html
http://www.xoomforums.com/forum/motorola-xoom-development/12997-rooting-family-edition.html
http://www.xoomforums.com/forum/motorola-xoom-development/12997-rooting-family-edition.html
http://www.xoomforums.com/forum/motorola-xoom-development/12997-rooting-family-edition.html
http://www.xoomforums.com/forum/motorola-xoom-development/12997-rooting-family-edition.html
http://www.xoomforums.com/forum/motorola-xoom-development/12997-rooting-family-edition.html


Fourteenforty Research Institute, Inc. 

 

• ZTE Root Shell Vulnerability 

– “/system/bin/sync_agent” setuid (and world-executable) program 

– Ability to run a root shell with a hard coded password 

Android : Access Control Vulnerability 

22 

Reference: 

http://blog.mobiledefense.com/2012/05/zte-root-shell-vulnerability/ 

http://blog.mobiledefense.com/2012/05/zte-root-shell-vulnerability/
http://blog.mobiledefense.com/2012/05/zte-root-shell-vulnerability/
http://blog.mobiledefense.com/2012/05/zte-root-shell-vulnerability/
http://blog.mobiledefense.com/2012/05/zte-root-shell-vulnerability/
http://blog.mobiledefense.com/2012/05/zte-root-shell-vulnerability/
http://blog.mobiledefense.com/2012/05/zte-root-shell-vulnerability/
http://blog.mobiledefense.com/2012/05/zte-root-shell-vulnerability/
http://blog.mobiledefense.com/2012/05/zte-root-shell-vulnerability/


Fourteenforty Research Institute, Inc. 

 

• Heap overflow vulnerability in [not disclosed yet] 

– CVE-2005-2096 (vulnerability in zlib -1.2.2) 

– This showed us Windows Phone 7 apps are not vuln-free 

(such native vulnerabilities can be found) 

• Risks of Exploitation 

– If a vulnerable native app has “Interop Services” 

capability, it can cause disaster (ID_CAP_INTEROPSERVICES) 

– Otherwise it’s not much help for bypassing sandbox 

• Just taking control may be not enough for 

system compromise (because of strong isolation) 

• Fortunately, [not disclosed] didn’t have one 

Windows Phone 7 : Vulnerability 

23 



Fourteenforty Research Institute, Inc. 

 

• Some Windows Phone 7 devices have “backdoor” 

interop services which enables access resources in many regions 

– Files 

– Registry 

– Physical RAM (?!) 

• These services can be accessed from apps with 

ID_CAP_INTEROPSERVICES capability 

– There are some non-OEM native apps 

(which can access all interop services) 

• Microsoft should have been separated such services 

– If an application need an interop service, 

all interop services will be permitted 

Windows Phone 7 : Design Flaw 

24 

Reference: http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf  

http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf
http://labs.mwrinfosecurity.com/assets/128/mwri_wp7-bluehat-technical_2011-11-08.pdf


Fourteenforty Research Institute, Inc. 

 

FINDING VULNERABILITIES 

It was not so difficult. 

25 



Fourteenforty Research Institute, Inc. 

 

• If device A have been hacked by others, device B 

(which has similar configuration) may have similar vulnerability 

– Same/Similar chipset 

– Same/Similar vendor 

General : Find Similar Hacks 

26 



Fourteenforty Research Institute, Inc. 

 

• Original system interface may be disaster 

– Buffer overflow 

– Directory traversal 

– Improper access to file system 

• Using… 

– IDA Pro to figure out what interface the device has 

– Custom tools to exploit (or try to exploit) 

General : Focus on “System” interface 

27 



Fourteenforty Research Institute, Inc. 

 

• Applicable for GPL/LGPL portions 

– Diffing between original source code and vendor one 

– AOSP and some vendors (like Qualcomm) serves git 

repository and makes diffing easier 

• Download every history by cloning git repository and 

compare each commits to find neighborhood 

• Take a complete diff and investigate “vendor” parts 

• 1.3GB total for “Android” Linux kernel trees and 

thousands of appropriate commits 

– It may require optimization for diffing 

(if you don’t know which chipset the device uses) 

Android : Diffing source tree 

28 



Fourteenforty Research Institute, Inc. 

 

• Access all the files and directories which we can access 

– Just doing this can reveal vulnerability 

• Find “third-party” daemons 

– This will help efficient reverse engineering 

• Disassemble/Decompile important programs and extract 

path information (to figure out) 

– Some locations which have “improper access” are difficult 

to find without reverse engineering 

Android : Diffing files and directories 

29 



Fourteenforty Research Institute, Inc. 

 

• Check which module is loaded 

and make sure the way to load module is secure 

– If the module is loaded insecurely, 

we could “insert” module to be loaded 

– Symbolic link may help 

(many programs cannot handle symbolic links correctly) 

Android : Modules to load 

30 



Fourteenforty Research Institute, Inc. 

 

• Windows Phone 7 updates are completely separated between 

Microsoft updates and OEM updates 

– Downloading OEM updates will make reverse engineering 

very easy (no need to “jailbreak” real device!) 

– *.cab.pkg (CAB files) : Separate update package 

• Package file is a gold mine of reverse engineering 

– *.rgu : Registry file (driver information, configurations…) 

– *.policy.xml : Policy XML (used for access control) 

– *.dll, *.exe : Drivers / PE files (to disassemble) 

Windows Phone 7 : Updates 

31 



Fourteenforty Research Institute, Inc. 

 

• System symbols for Windows Phone 7 

– If you can retrieve WP7 system binaries (e.g. extract ROM), 

you can download the symbols from well-known URL 

<http://msdl.microsoft.com/download/symbols> 

– Loading symbols may break IDA Pro but can be fixed: 

• Start analyzing module without loading symbols 

• Save “Thumb” functions 

• Load symbols 

• For each “Thumb” functions, restore register “T”. 

(to make functions really “Thumb” again) 

• Reanalyze module from options menu 

Windows Phone 7 : Symbols 

32 

http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols


Fourteenforty Research Institute, Inc. 

 

CONCLUSION 

So, what is the problem? 

33 



Fourteenforty Research Institute, Inc. 

 

• May not be easy to know 

– Many zero-days 

• May not be fixed so fast 

– Varying on vendors 

– May be same on “common” Android vulnerabilities 

• May be easy to exploit 

– If the third-party vendor didn’t properly design security 

• Definitely easy to find 

– Find vulnerability from 1 million lines or 1 thousand lines 

Problems of third-party vulnerabilities 

34 



Fourteenforty Research Institute, Inc. 

 

• Vulnerability made by third-party modification may be disaster 

• There are some points to find such vulnerabilities 

• Vendors must consider security design 

Conclusion 

35 



Fourteenforty Research Institute, Inc. 

 

36 

Thanks! 

Fourteenforty Research Institute, Inc. 
http://www.fourteenforty.jp 

 

Tsukasa Oi – Research Engineer 

<oi@fourteenforty.jp> 

mailto:oi@fourteenforty.jp

