IntelMQ hands-on workshop

TF-CSIRT/FIRST meeting Malaga 2020/1/31
Aaron Kaplan Kaplan@cert.at

[l Co-finance d by the Connecting Europe
P Facility of the European Union

mailto:Kaplan@cert.at

Overview of today

 Introduction presenters

1 Check: are we ready (VMs)?
1 Lesson 1: Theory section (1h)
(J Hands-on Lesson 2

] Break (10:30 - 11:00)

] (Cont.) Lesson 2

 IntelMQ future

U (in parallel for the fast ones Lesson 3)

Introduction presenters

Are we ready?

v VirtualBox + VM

v Network connectivity

Theory part

History & background

* In the beginning, there was Abusehelper (~ 2013). Still around for
some teams

* Too complex (at that time) for us, too expensive, semi-open source, hard to
get PRs upstream, etc.

e CERT.pt (Tomas Lima) created initial IntelMQ version in ~ 2014

e “works”

Aaron Kaplan brings in IntelMQ to CERT.at, CERT.at takes over maintainership
Many steps to change the PoC to production ready code

Emphasis on open source (via github.com)

Emphasis on KISS

The IntelMQ promise

IntelMQ follows the following basic meta-guidelines:

* Don't break simplicity — KISS (think Lego blocks for IT security
automation)

* Keep it open source - forever

e Strive for perfection while keeping a deadline

* Reduce complexity/avoid feature bloat

* Embrace unit testing

* Code readability: test with unexperienced programmers
 Communicate clearly

The community project

* At the heart of all of this is: IntelMQ is a community project
* Open source for ever (AGPL v3)

* Many contributions (thanks to CSIRT.cz, .SK, .PT, BSI/CERT-Bund, etc.
etc.)

* Maybe one day, you will join us?
* It’s easy if you try

The extended community project - IHAP

* Incident Handling Automation Projects
* Regular meetings of tool developers for incident handling automation
* Next meeting in Vienna ~ April 2020 (TBA)

* http://www.enisa.europa.eu/activities/cert/support/incident-
handling-automation

* Mailing-list: ihap@lists.trusted-introducer.org

 Subscription? =2 ping Kaplan@cert.at

http://www.enisa.europa.eu/activities/cert/support/incident-handling-automation
mailto:ihap@lists.trusted-introducer.org
mailto:Kaplan@cert.at

CERT.at’s role in IntelMQ

* Maintainer / steward of the project

* Contribute code

* Code submission QA review

* Release mgmt

* Coordination

* Architecture design of future versions (with the community)

Okay, so what is InteIMQ?

TL;DR Version (1)

* A framework (python) of “lego blocks” of IT security CERT automation.
* Lego blocks are simple (KISS principle).
* Lego blocks can be re-combined as you need.

* You are missing a block? -> Look, if someone already wrote it. If not, write
it and share with the community =» synergy effects

e Every CERT has its own workflow.

* Blocks can be connected with each other to create “flow” via a MQ
* Data-flow oriented architecture

* The stuff that “flows” is log lines (“events”)

* Similar to unix pipelines

@ INT

Collector

Parser

Expert

Output

Edit Defaults

-LMQ Configuration ;L Management

@ Add Bot ‘ @ Add Queue

g Monitor

Check Q About

x

- = Physics c Redraw Botnet m Clear Configuration u Save Configuration

Use-cases: what do we need to solve?

* A CERT receives tons of data feeds (shadowserver, etc.)

* There is no single format for all of that = write parsers for
everything(?)

* Need to process, filter, verify, ...
* send out to constituency and/or
* React on the data feed (firewall blocks, etc.)

* = |InteIMQ is the glue for this streaming data. It connects.

& swapows:rve

Differentiation from MISP

* MISP was meant to
» share loCs amongst analysists (especially APTs etc)
* Correlation is a key feature
* Lower volume

* IntelMQ was made to as an ETL (Extract Transform Load) framework
for
* High throughput / high volume
* No Correlation
* For parsing all the feeds, a CERT might receive , process it a bit and send it on.

Terminology

¢ “feed”

* Streaming or
 Download

* “Bot”

* “Botnet”

* "Parser”

* “Collector”

* “Expert”

e “Output”

* “Report”

e “Event”

 “DHO” — Data Harmonization Ontology (== internal format for events)

Terminology in Detail

* Bot = Small python script which
* |Inherits from the Bot class
* Implements an init() method
* Implements a process() method

* Botnet = a collection of bots. A set of DAGs of bots.
* Pipeline = the structure of the MQs which connect the bots

Example bot

class MyBot(Bot):
def init(self):
optional 1nitialization
def process(self):
event = self.receive message() # dict
process event
self.send message(event)

@ | N T E L M Q Configuration

Collector

Parser

Expert

Output

Edit Defaults

Pipelines

@ Add Bot

>‘L Management

@ Add Queue

g Monitor

Check Q About

x

- = Physics C Redraw Botnet m Clear Configuration w Save Configuration

collector

parser

collector

v

parser

expert

output

expert

collector

parser

N ¥

expert

output

expert

\ output

Terminology: types of Bots

Collector = emits Report

* Parser = emits Events

Expert =2 enriches / filters
Output -2 sends it somewhere

Examples for Experts:

* filter by country code (expert)
* Add ASN by IP address

Examples for Output:
* Write to MongoDB, PostgreSQL DB
* Write to Elastic Search
* Send to Ticket System
e Send via email

@ INT

Collector .
Parser S
Expert S
Output 8

Edit Defaults

Types of bo

-LMQ Configuration

@ Add Bot

s

>‘L Management

@ Add Queue

g Monitor

Check

0 About

= Physics c Redraw Botnet m Clear Configuration

H Save Configuration

®

ob

©®

normal

Types of Messages

* Report:
» Data (base64 combined) + metadata
* Example: the whole blocklist from spamhaus

* Event:
* A report gets split up into individual log lines (== “Events”)
* An event is in the DHO format
* Following bots in the pipeline can rely on the format

< C @& github.com/certtools/intelmq/blob/develop/docs/Harmonization-fields.md v

retrieval/generation.

. Abuse contact for source address.
Source source.abuse_contact LowercaseString)
A comma separated list.

An account name or email
address, which has been identified

Source source.account String

to relate to the source of an abuse

event.

_ Allocation date corresponding to

Source source.allocated DateTime .

BGP prefix.

The autonomous system name
Source source.as_name String from which the connection

originated.

The autonomous system number
Source source.asn ASN from which originated the

connection.

) i The suffix of the domain from the

Source source.domain_suffix FQDN

public suffix list.

A DNS name related to the host
from which the connection
originated. DNS allows even binary
Source source.fqdn FQDN data in DNS, so we have to allow
everything. A final point is
stripped, string is converted to

* https://github.com/certtools/intelmqg/blob/develop/docs/Harmonization-fields.md lower case characters.

(|

https://github.com/certtools/intelmq/blob/develop/docs/Harmonization-fields.md

Configuration parameters

© Perform Action... >_ 1£62% oS~ TE12GB

user@malaga:~$

user@malaga:~$

user@malaga:~$ cd /opt/intelmqg/etc/
user@malaga: /opt/intelmq/etc$ 1s -al
total 180
d rwx rwxr=x
drwxr=xr-=x
—rw—rw—r——
—rw—rw—r—-—
—rw—rw—r—-—
—rw—rw—r—-—
d rwx rwxr=x
—rw—rw—r——
—rw—rw—r——
—rw—r——r——

intelmg www—data 4096

intelmg intelmg 4096 : .

intelmg www—data 51899 : BOTS

intelmg www—data 1328 : defaults.conf
intelmqg www—data 68603 : feeds.yaml

intelmg www—data 21085 : harmonization.conf
intelmg www—data 4096 : manager

intelmg www—data 2351 : pipeline.conf
intelmqg www—-data 8649 : runtime.conf

root root 466 : webinput_csv.conf

R RPRRPRNRPRRRPRRLRDAW

Configuration parameters

e JSON files

e Runtime.conf — bots parameters
* Pipeline.conf —the pipeline setup

Questions on the theory?

