
IntelMQ hands-on workshop
TF-CSIRT/FIRST meeting Malaga 2020/1/31

Aaron Kaplan Kaplan@cert.at

mailto:Kaplan@cert.at

Overview of today

q Introduction presenters
q Check: are we ready (VMs)?
q Lesson 1: Theory section (1h)
q Hands-on Lesson 2
q Break (10:30 – 11:00)
q (Cont.) Lesson 2
q IntelMQ future
q (in parallel for the fast ones Lesson 3)

Introduction presenters

Are we ready?
ü VirtualBox + VM
ü Network connectivity

Theory part

History & background

• In the beginning, there was Abusehelper (~ 2013). Still around for
some teams
• Too complex (at that time) for us, too expensive, semi-open source, hard to

get PRs upstream, etc.
• CERT.pt (Tomas Lima) created initial IntelMQ version in ~ 2014
• “works”
• Aaron Kaplan brings in IntelMQ to CERT.at, CERT.at takes over maintainership
• Many steps to change the PoC to production ready code
• Emphasis on open source (via github.com)
• Emphasis on KISS

The IntelMQ promise

IntelMQ follows the following basic meta-guidelines:
• Don't break simplicity – KISS (think Lego blocks for IT security

automation)
• Keep it open source - forever
• Strive for perfection while keeping a deadline
• Reduce complexity/avoid feature bloat
• Embrace unit testing
• Code readability: test with unexperienced programmers
• Communicate clearly

The community project

• At the heart of all of this is: IntelMQ is a community project
• Open source for ever (AGPL v3)
• Many contributions (thanks to CSIRT.cz, .SK, .PT, BSI/CERT-Bund, etc.

etc.)
• Maybe one day, you will join us?
• It’s easy if you try

The extended community project - IHAP

• Incident Handling Automation Projects
• Regular meetings of tool developers for incident handling automation
• Next meeting in Vienna ~ April 2020 (TBA)
• http://www.enisa.europa.eu/activities/cert/support/incident-

handling-automation
• Mailing-list: ihap@lists.trusted-introducer.org

• Subscription? à ping Kaplan@cert.at

http://www.enisa.europa.eu/activities/cert/support/incident-handling-automation
mailto:ihap@lists.trusted-introducer.org
mailto:Kaplan@cert.at

CERT.at’s role in IntelMQ

• Maintainer / steward of the project
• Contribute code
• Code submission QA review
• Release mgmt
• Coordination
• Architecture design of future versions (with the community)

Okay, so what is IntelMQ?

TL;DR Version (1)

• A framework (python) of “lego blocks” of IT security CERT automation.
• Lego blocks are simple (KISS principle).
• Lego blocks can be re-combined as you need.
• You are missing a block? -> Look, if someone already wrote it. If not, write

it and share with the community è synergy effects
• Every CERT has its own workflow.
• Blocks can be connected with each other to create “flow” via a MQ
• Data-flow oriented architecture
• The stuff that “flows” is log lines (“events”)
• Similar to unix pipelines

Use-cases: what do we need to solve?

• A CERT receives tons of data feeds (shadowserver, etc.)
• There is no single format for all of that à write parsers for

everything(?)
• Need to process, filter, verify, …
• send out to constituency and/or
• React on the data feed (firewall blocks, etc.)

•è IntelMQ is the glue for this streaming data. It connects.

Differentiation from MISP

• MISP was meant to

• share IoCs amongst analysists (especially APTs etc)

• Correlation is a key feature

• Lower volume

• IntelMQ was made to as an ETL (Extract Transform Load) framework

for

• High throughput / high volume

• No Correlation

• For parsing all the feeds, a CERT might receive , process it a bit and send it on.

Terminology

• “feed”
• Streaming or
• Download

• “Bot”
• “Botnet”
• ”Parser”
• “Collector”
• “Expert”
• “Output”
• “Report”
• “Event”
• “DHO” – Data Harmonization Ontology (== internal format for events)

Terminology in Detail

• Bot = Small python script which
• Inherits from the Bot class
• Implements an init() method
• Implements a process() method

• Botnet = a collection of bots. A set of DAGs of bots.
• Pipeline = the structure of the MQs which connect the bots

Example bot

class MyBot(Bot):
def init(self):

optional initialization
def process(self):

event = self.receive_message() # dict
process event
self.send_message(event)

Pipelines

Terminology: types of Bots

• Collector à emits Report
• Parser à emits Events
• Expert à enriches / filters
• Output à sends it somewhere

• Examples for Experts:
• filter by country code (expert)
• Add ASN by IP address

• Examples for Output:
• Write to MongoDB, PostgreSQL DB
• Write to Elastic Search
• Send to Ticket System
• Send via email

Types of bots

Types of Messages

• Report:
• Data (base64 combined) + metadata
• Example: the whole blocklist from spamhaus

• Event:
• A report gets split up into individual log lines (== “Events”)
• An event is in the DHO format
• Following bots in the pipeline can rely on the format

DHO

• https://github.com/certtools/intelmq/blob/develop/docs/Harmonization-fields.md

https://github.com/certtools/intelmq/blob/develop/docs/Harmonization-fields.md

Configuration parameters

Configuration parameters

• JSON files
• Runtime.conf – bots parameters
• Pipeline.conf – the pipeline setup

Questions on the theory?

