PRACTICAL SOC METRICS

PRESENTED BY CARSON ZIMMERMAN IN COLLABORATION WITH CHRIS CROWLEY

FIRST 2019

ALL MATERIAL COPYRIGHT 2019, CARSON ZIMMERMAN UNLESS OTHERWISE NOTED

ABOUT CARSON

- Worked in Security Operations for ~15 years
- SOC Engineering Team Lead @ Microsoft
- Previously SOC engineer, analyst & consultant @ MITRE
- Checkout my book if you haven't already: <u>https://www.mitre.org/publications/all/ten-</u> <u>strategies-of-a-world-class-cybersecurity-</u> <u>operations-center</u>

ABOUT CHRIS

- Independent Consultant (Montance.com)
- SANS Institute
 - Senior Instructor & Course Author
 - SOC Survey Author (2017, 2018, 2019)
 - Security Operations Summit Chair
- 017, 2018, 2019) ummit Chair
- SOC-class.com Security Operations Class on building & running a SOC
- Engagements with Defense, Education, Energy, Financial, IT, Manufacturing, Science, Software Development, ...

PICK SOMETHING YOU LOVE...

http://disney.wikia.com/wiki/File:TS2_Jessie_hugs_Woody.jpg

...AND MEASURE IT

https://en.wikipedia.org/wiki/Tape_measure#/media/File:Measuring-tape.jpg

MEASURING THINGS USUALLY DRIVES CHANGE

Even if you're not at CMM level >= 3, you can still get started!

METRICS ARE LIKE LIGHTSABERS

https://www.maxpixel.net/Laser-Sword-Lightsaber-Green-Science-Fiction-Space-1675211

THEY CAN BE USED FOR GOOD ...

https://www.scifinow.co.uk/blog/top-5-star-wars-scenes-we-want-to-see-on-blu-ray/

...AND FOR EVIL

http://starwars.wikia.com/wiki/File:UnidentifiedClan-RotS.jpg

SOME DEFINITIONS

- Metrics: things you can objectively measure
 - Input: behaviors and internal mechanisms
 - Output: results, typically customer-facing
- Service level agreements (SLAs): agreement/ commitment between provider and customer
- Service level objectives (SLOs): performance metric or benchmark associated with an SLA

https://searchcio.techtarget.com/answer/Whats-thedifference-between-SLO-and-SLA

TOP TIPS

- Metric data should be free and easy to calculate
 - ½ of all SOCs collect metrics according to SANS SOC survey 2017 & 2018
- There should be a quality measure that compensates for perversion
 - Especially when there's a time based metric!
- Metrics aren't (necessarily) SLOs
 - The metric is there to help screen, diagnose, and assess performance
 - Don't fall into a trap of working to some perceived metric objective
 - Any metric should have an intended effect, and realize the measurement and calculation isn't always entirely valid
- Expectations, messaging, objectives- all distinct!

DATA SOURCES

- SOC Ticketing/case management system
- SIEM / analytic platform / EDR- anywhere analysts create detections, investigate alerts
- SOC code repository
- SOC budget
 - CAPEX including hardware & software
 - OPEX including people & cloud
- Enterprise asset management systems
- Vulnerability management

https://video-

images.vice.com/articles/5b02e43f187df600095f5e7c/lede/1 526917810059-GettyImages-159825349.jpeg

EXISTING RESOURCES

https://www.fireeye.com/content/d am/collateral/en/mtrends-2018.pdf

- SOC CMM: measure your SOC top to bottom
- VERIS Framework: track your incidents well
- SANS SOC Survey: recent polls from your peers

https://www.verizonenterprise.com/resources/reports/ rp_DBIR_2018_Report_execsummary_en_xg.pdf

EXAMPLE METRICS

ALL MATERIAL COPYRIGHT 2019, CARSON ZIMMERMAN UNLESS OTHERWISE NOTED

METRIC FOCUS 1: DATA FEED HEALTH

- Is it "green"
- What is green anyway?
- Just because it's up doesn't mean all is well
 - Delays in receipt
 - Drops
 - Temporary
 - Permanent
 - Blips

https://en.wikipedia.org/wiki/Watermelon #/media/File:Watermelon_cross_BNC.jpg

HOW MANY EVENTS ARE WE RECEIVING?

Select count(*) | group by DataCollectorName, SourceEnvironment, bin(ReceiptTime, day)

•	• • • • • • • •	・ び 🔻 🖬 Collec	tor Counts v02	Q~ Search	Q- Search Sheet		
Н	ome Insert Page	Layout Formulas	Data Revie	ew View	<u> </u>	+ Share 🐱	
D4 $\stackrel{*}{\checkmark}$ \times \checkmark f_x 32							
	А	В	С	D	E	F	
1	DataCollectorName	SourceEnvironment	ReceiptTime	count()			
2	CollectorA	Finance	1-Jul	56			
3	CollectorA	Finance	2-Jul	65			
4	CollectorA	Finance	3-Jul	32			
5	CollectorA	Finance	4-Jul	64			
6	CollectorA	Finance	5-Jul	97			
7	CollectorB	Finance	1-Jul 56				
8	CollectorB	Finance	2-Jul	65			
9	CollectorB	Finance	3-Jul	32			
10	CollectorB	Finance	4-Jul	22			
11	1 CollectorB Finance		5-Jul	105			
12	CollectorB	Finance	6-Jul	64			
13	CollectorB	Finance	7-Jul	93			
14	CollectorC	Engineering	1-Jul	56			
15	CollectorC	Engineering	3-Jul	3-Jul 14			
16	CollectorC	Engineering	4-Jul 64				
17	CollectorC	Engineering	5-Jul	29			
18	CollectorC	Engineering	6-Jul	6-Jul 43			
19	CollectorC	Engineering	7-Jul	76			
Sheet4 Sheet1 +							
Ready 🔠 🗐 🖳 – – – – + 140%							

3 MINUTES LATER...

● ● ● 📑 🖬 🖒 🔹 🖑 Search Sheet						Sheet 🙂 🗸					
Но	Home Insert Page Layout Formulas Data Review View PivotTable Analyze Design										
	able Name: Active Fie Table3 Options DataCo		Grou Selecti	p Inser on Slice	t Insert	Filter Connection	Refres	sh Chan Data So	ge	e Fields, Items, & Sets	
A10 $\stackrel{\bullet}{\checkmark}$ \times \checkmark f_x CollectorD											
	А	В	С	D	Е	F	G	н	I	PivotTable Fields	. 🛇
1										FIELD NAME	Q Search fields
2										✓ DataCollectorNam	ne
3	Sum of count()	Column Labels 🕞								SourceEnvironme	nt
4	Row Labels	1-Jul	2-Jul	3-Jul	4-Jul	5-Jul	6-Jul	7-Jul	Grand Total	ReceiptTime	U
5	🗏 Finance									Filters	• III Columns
6	CollectorA	56	65	32	64	97	0	0	314		ReceiptTime
7	CollectorB	56	65	32	22	105	64	93	437		
8	8 Engineering										
9	CollectorC	56	0	14	64	29	43	76	282		
10	CollectorD	56	0	24	44	34	74	32	264	■ Rows	Σ Values
11	CollectorE	83	0	34	64	57	32	42	312	: SourceEnvironment	Sum of count()
12	Grand Total	307	130	136	258	322	213	243	1609	: DataCollectorName (9
13											
14											
•	Sheet4 Sheet1	+								Drag fields	s between areas
Ready 📰 🗉 — — + 200%											

ADVANCED: AUTO DETECTION OF OUTAGES

OldCounts = Select OldCount=count(*)/7, OldDevices= distinct(deviceHostName) | where ReceiptTime < now() and ReceiptTime > ago(7 days) | group by DataCollectorName, SourceEnvironment;

NewCounts = Select NewCount=count(*), NewDevices= distinct(deviceHostName)
| where ReceiptTime > ago(1 day)
| group by DataCollectorName, SourceEnvironment;

Join type= leftouter NewCounts on OldCounts by DataCollectorName, SourceEnvironment

- project CountRatio = NewCount/OldCount,
- DeviceRatio = NewDevices/OldDevices
- | IsBroken = OR(CountRatio < 25%, DeviceRatio < 50%)

RESULT

	OldCount	NewCount	OldDevices	NewDevices	IsBroken
Collector A	2230	2120	1002	934	No
Collector B	1203	1190	894	103	Yes
Collector C	3203	3305	342	325	No
Collector D	1120	305	569	234	Yes
Collector E	342	102	502	496	Yes

• Detection of dead, slow or lagging collectors or sensors is fully automated

Consider human eyes on: weekly or monthly

ADVANCED: MEASURE TIME EVERYWHERE

Latency as a factor of:

Systems rejoining the

network & network

Ingest & parsing

Batched query

Decoration / enrichment

NRT analytics & correlation

1. Clock skew

outages

а.

b.

С.

d.

3. Lack of capacity:

2.

Triage

Data

Science

NRT

Analytic

Engine

METRIC FOCUS 2: COVERAGE

Dimensions:

- 1. Absolute number *and* percentage of coverage per compute environment/enclave/domain
- 2. Kill chain or ATT&CK cell
- 3. Layer of the compute stack (network, OS, application, etc.)
- 4. Device covered (Linux, Windows, loT, network device)

Tips:

- 1. Never drive coverage to 100%
 - a. You don't know what you don't know
 - b. Always a moving target
- 2. There is always another environment to cover, customer to serve
- 3. There will always be more stones to turn over; don't ignore any of these dimensions

MANAGED VS WILDERNESS

- Percentage of systems "managed":
 - Inventoried?
 - Tied to an asset/business owner?
 - Tied to a known business/mission function?
 - Subject to configuration management?
 - Assigned to a responsible security team/POC?
 - Risk assessed?
- If all are yes: it's managed
- If not: it's "wilderness"
- SOC observed device counts help identify "unknown unknowns" in the wilderness

VALIDATING DATA FEED & DETECTION COVERAGE

- 1. Expected heartbeat & true activity from every sensor and data feed
- 2. Detection triggers
 - a. Injected late into pipeline as synthetic events: consider "unit" tests for each of your detections
 - b. Injected early into pipeline as fake "bad" activity on hosts or networks
- 3. Blue/purple/red teaming: strong way to test your SOC!

MONITORING SLAS/SLOS

- SLA: Agreement = monetary (or other penalty) for failing to meet
- SLO: Objective = no specific penalty agreed to for failing to meet
- Institution & missions specific where these need to be set in place
- Don't monitor everything the same way!
 - Instrumentation, custom detections, response times, retention

Basic Service

- Host EDR
- Network logs
- Standard mix of detections
- Yearly engagement

Advanced Service

- Basic, plus:
- 3 application logs
- 1 focused detection/quarter
- Quarterly engagement

METRIC FOCUS 3: SCANNING AND SWEEPING

Basic

- # + % of known on prem & cloud assets scanned for vulns
- Amount of time it took to compile vulnerability/risk status on covered assets during last high CVSS score "fire drill"
- Number of people needed to massage & compile these numbers monthly

Advanced

- Time to sweep and compile results for a given vuln or IOC:
 - A given domain/forest identity plane
 - Everything Internet-facing
 - All user desktop/laptops
 - Everything
- # + % of assets you can't/don't cover (IoT, network devices, etc.)

METRIC FOCUS 4: YOUR ANALYTICS

Basics:

- 1. Name
- 2. Description
- 3. Kill chain mapping
- 4. ATT&CK cell mapping
- Depends on which data type(s) (OS logs, Netflow, etc.)
- 6. Covers which environments/enclave
- 7. Created- who, when

Advanced:

Runs in what framework 8. (Streaming, batched query, etc.) 9. Last modified- who, when 10. Last reviewed- who, when 11. Status- dev, preprod, prod, decom 12. Output routes to... (analyst triage, automated notification, etc.)

MEASURE ANALYST PRODUCTIVITY

Analytics Status for Last Month

- Is this good or evil?
- Can this be gamed?

HOW FRUITFUL ARE EACH AUTHOR'S DETECTIONS?

- # of times a detection or analytic fired, attributed to the detection author
- Is this evil?
- How can this be gamed?

Alert Final Disposition by Detection Author

HOW ARE YOU SUPPORTING YOUR CUSTOMERS?

MAP YOUR ANALYTICS TO ATT&CK

0 Ph caret × 4 C Secure https://car.mitre.org/caret/# CARET DOWNLOAD DATA ATT&CK MAPPING EXPLORE NETWORKS Credential Lateral Privilege Exfilt Collection Persistence Defense Evasion Discovery Execution Detailed grid Detailed grid Escalation Access Movement sh_profile an Access Token Access Token Account Account AppleScript AppleScript Audio Capture Exfiltr Manipulation Manipulation Manipulation bashrc Discovery Da Accessibility Accessibility Application Application Automated BITS Jobs **Bash History** CMSTP Features Features Window. Deployment Collection Compr Command-Line Distributed Browser AppCert DLLs lipboard Data Data En **Sinary Paddin** Brute Force AppCert DLLs Bookmark Interface Component Bypass User Credential Control Panel Exploitation o File and Data Tr AppInit DLLs AppInit DLLs Data Staged ccount Contr Directory. Dumping emote Service Size I Items CLEAR ALL SELECT ALL Credentials in xfiltrat Application Application etwork Servic Dynamic Data Data from CMSTP Logon Scripts Exchange Shimming Scanning Files Information Altern OR ORCOLLES OF R CLASS OF A DESPECTATION CONSTRAINTS lear Comman redentials in xfiltrati uthentication **Bypass User Vetwork Share** Execution ata from Loca CAR-2013-04-002 Pass the Hash Package History ccount Contr Discovery Registry through AP System Comma xfiltrati **DLL Search** assword Poli xploitation for Execution Data from **Suspicious Run Locations** BITS Jobs **Code Signing** Pass the Ticke 1 Order Hijackin Credential hrough Modu twork Shar Discovery Other N CAR-2013-05-002 Remote Deskton xfiltrati Component Peripheral Forced Exploitation fo Data from Bootkit Dylib Hijackin Firmware Authenticatio lient Executio Protocol Removable Phys evice Discover SMB Write Request ~ **Exploitation** fo Graphical User **Remote File** Schee CAR-2013-05-003 Browser Component Permission mail Collection Hooking Tran **Object Mode** Interface Extensions Privilege Groups. Copy Execution with AT **Change Default Control Pane** Extra Window Process Input Capture Input Capture InstallUtil **Remote Services** File Association Memory. Items Discovery CAR-2013-05-004 **File System** Replication Man in the Component LSASS Driver DCShadow uery Registry Input Promp Firmware Permissions. Through. Browser SMB Copy and Execution ~ CAR-2013-05-005 **DLL Search** Component emote Syster Hooking Launchetl Kerberoasting SSH Hijacking Screen Capture Object Model rder Hijackin Discovery Running executables with same hash and different names **DLL Side**-Image File Local Job Security reate Accoun Keychain Shared Webroot Video Capture Loading Execution Software. CAR-2013-05-009 DLL Search obfuscate/De System LMNR/NBT-NS **Taint Shared** aunch Daemo Mshta rder Hijackin Content Files or. Information. Poisoning **Suspicious Arguments**

 Props to MITRE for the great example

Θ

\$

Many places to do this... consider any structured code repo or wiki

Multilayer Encryption Port Knocking

https://car.mitre.org

METRIC FOCUS 5: ANALYST PERFORMANCE

- 1. Name
- 2. Join date
- 3. Current role & time in role
- Number of alerts triaged in last 30 days
- 5. % true positive rate for escalations
- 6. % response rate for customer escalations
- 7. Number of escalated cases handled in last 30 days
- 8. Mean time to close a case

- 9. Number of analytics/detections created that are currently in production
- 10. Number of detections modified that are currently in production
- 11. Total lines committed to SOC code repo in last 90 days
- 12. Success/fail rate of queries executed in last30 days
- 13. Median run time per query
- 14. Mean lexical/structural similarity in queries run

Analyst Baseball Card

Christopher Crowley	Name		
Chris	Preferred first name		
TwoGuns	Callsign		
2015-11-17	Join Date		
NSM Analyst - Senior	Current Role		
1 year, 1 month	Time in Role		
38	Alerts Triaged in last 30 days		
91.40%	Percent True Positive Rate		
82.70%	Response rate percent for customer escalation		
19	Escalated cases handled in last 30 days		
1:34	Mean time to close case		
7	Number analytics created currently in production		
28	Number detection modified currently in production		
423	Total lines committed to SOC code repository in last 90 days		
91.40%	Success rate of queries against SIEM in last 30 days		
0:09	Median run time per query		
0.23	Mean lexical structure similarity in queries run in last 30 days		

A MITTER AND

				Detection 33: downrev user agent string		Detection 56: low entropy on 443		
			Detection	Det	Det	Det	De	
	Detection 76:	Detection	23:	64:	34:	87:	34:	
Detection 21: IoC file	Elephant flow	22: AV	downrev	SQL	SSL	high	VPN	
hash match	on weird port	deactiva	AV	inje	bad	entr	ti	

Quick F+ by T1	Quick F+ by T2
True +	Garnered Further Work
Auto Remediated	Auto notified

METRIC FOCUS 6: INCIDENT HANDLING

- Mean/median adversary dwell time
- Mean and median time to...
 - Triage & Escalate
 - Identify
 - Contain
 - Eradicate & recover
- Divergence from SLA/SLO?
- Insufficient eradication?
- Threat attributed?

Top sources of confirmed incidents

- Proactive? Reactive?
- User reports? SOC monitoring?
 Data & "anecdata": unforced errors and impediments
- Time waiting on other teams to do things
- No data/bad data/ data lost
- Incorrect/ambiguous conclusions
- Time spent arguing with other parties

TYPICAL INCIDENT METRICS

Incidents: Last 6 Months

Escalated to 3rd party

More ideas:

- Mean/median time to respond
- Cases left open > time threshold
- Cases left open by initial reporting/detection type
- Stacked bar chart by case type

INCIDENT IMPACT

- Few systems (or only a specific type)
- Unimportant systems
- Unimportant data

Moderate

Low

- More systems (or many common types)
- Important or high value person's, account, or system
- Important data at risk

High

- Most systems (or almost all types)
- Highest level accounts, users, and systems
- Business critical data

INCIDENT IMPACT CATEGORY

Functional

- Low minimal function disruption
- Moderate substantial disruption
- High complete disruption

Informational

- Intellectual Property (L/M/H)
- Integrity Manipulation (L/M/H)
- Privacy violated (such as PII / PHI)

Recoverable

- Regular predictable using resources on hand
- Supplemented predictable with augmented resources
- Unrecoverable data breach which cannot be undone

See more here: https://www.us-cert.gov/incident-notification-guidelines#impact-category-descriptions

INCIDENT AVOIDABILITY

- The vast majority of incidents are avoidable... everyone realizes this
 - Collect metrics on how avoidable, what could have been done to prevent
- Crowley's Incident Avoidability metric
 - A measure, already available in the environment, is applied to other systems/networks, but wasn't applied -> resulting in the incident
 - 2. A measure is available (generally) and something (economic, political) prevents implementing it within the organization
 - 3. Nothing is available to prevent that method of attack
- Attribution for measure/mechanism in 1 & 2 is critical

METRIC FOCUS 7: INCIDENT FINANCIALS: COST

- \$ for handling, \$ for actual loss
- Routine handling
 - All alerts & reports fielded
 - Per escalated event to tier 2
 - True positives
- Consider:
 - Cost of people
 - Technology
 - Proportion of time spent

Cost to handle each incident

of incidents

- The more incidents you handle, the more efficient - > cheaper they will be to handle
- Only rare, awful incidents should be very costly to handle

INCIDENT FINANCIALS: VALUE

- Start with standard impact value assigned to each incident
- \$ saved/loss prevented
 - Routine incidents: standard calculation
 - Escalated & customized handling: often speculate
- What to do?
 - Past incidents
 - Reporting from other orgs, news
 - Iterate with execs

Example implied value: loss prevention

- Incidents that were escalated to legal counsel, law enforcement
- Incidents handled that clobbered competitors
- Direct value of IP caught in exfil
- Value of systems not being bricked from EFI bootkit

METRIC FOCUS 8: TOP RISK AREAS & HYGIENE

- Make vulnerability management data available to customers
 - Self service model
 - Scan results down to asset & item scanned
- But don't beat them over the head with every measure!
 - Pick classic ones they will always be measured on
 - Scanning, monitoring, patching

- Pick top risk items from own incident avoidability metrics and public intel reporting to focus on each year, semester, or quarter
 - Internet-exposed devices
 - Code signing enforcement
 - EDR deployment
 - Single factor auth
 - Non-managed devices & cloud resources

CONCLUSION

ALL MATERIAL COPYRIGHT 2019, CARSON ZIMMERMAN UNLESS OTHERWISE NOTED

SUMMARY: INTERNAL METRICS

- Analyst baseball card
 - Raw output / productivity
 - Technical & operational quality
 - Pedigree, training, growth
 - Kudos, "saves"
- Data feed health
 - Up/down
 - Latency
- Daily alert volume & FP rate

- Weekly intel & IOC processing volume
- Weekly forensics/malware volume
- Analytic coverage
 - Kill chain & ATT&CK cell
 - Dependencies: source, detection framework
 - Written by whom
 - Volume & success rates
 - Customer coverage

SUMMARY: EXTERNAL METRICS

Key themes: Cost – Value – Risk Always be ready to answer: "what have you done for me lately?"

- Managed vs unmanaged assets
- Monitoring & scanning coverage
- Top risk areas & hygiene
 - Top issues that are leading to incidents
- Custom detections & value add

- Incidents handled
 - Cost incurred & avoided
 - Causes & impediments
- Mean/median dwell time
- Mean/median time to identify, contain, eradicate, recover
- Mean/median time to respond to a data call, such as an IOC sweep

SUMMARY: SLAS / SLOS

Key themes:

For written agreements, select only the SLAs necessary to suit mission objectives

Examples:

- Response initiation within 4 hours
- Reporting / Notification frequency at minimum daily regarding any active incident rated at moderate severity

- If less than 50%, "Managed Systems": 5% percentage increase quarterly (improvement in asset tracking and identification as well as business coordination), above 90%, 1% increase quarterly
- Increased performance on repeated incidents of the same nature on the same systems (demonstrated improvement in proficiency)

CLOSING

- Whatever you do, measure something
- You can do it, regardless of how mature, old, or big your SOC is
- Pick your investments carefully
- Iterate constantly

YOU CAN

http://memeshappen.com/meme/custom/you-can-do-it-18134

QUESTIONS

"THERE ARE LIES, DAMN LIES, AND STATISTICS." -- UNKNOWN

ALL MATERIAL COPYRIGHT 2019, CARSON ZIMMERMAN UNLESS OTHERWISE NOTED