STIX & TAXII

Analyzing and Sharing Cyber Threat Intelligence
What are STIX and TAXII?

STIX™
A language for modeling and representing cyber threat intelligence.

TAXII™
A protocol for exchanging cyber threat intelligence.
STIX and TAXII are International Standards

- STIX and TAXII were developed by DHS and MITRE in conjunction with major collaboration partners from:
 - US Government
 - Financial Sector
 - Critical Infrastructure Sector
 - International industry and government

- As of 2015, both have transitioned to OASIS in the newly formed Cyber Threat Intelligence Technical Committee
Structured Threat Information Expression

A language for modeling and representing cyber threat intelligence.

- Structured language for automation
- Designed for sharing and analysis
- Active community of developers and analysts
- International standard in OASIS
Current Status

- **STIX 1.2 is the latest published version**
 - Published by DHS/MITRE
 - XML Schemas

- **STIX 1.2.1 will be published by OASIS**
 - Nearly identical to STIX 1.2
 - Will include text specifications, UML, and XML schemas

- **STIX 2.0 is currently in development**
 - JSON-based
 - Published by OASIS
 - Will include more comprehensive text specifications and UML
STIX 1.2 Architecture
STIX 1.2 Architecture - ZOOM
Instances of events and objects that have been seen in cyberspace
(and)
Patterns for events and objects that might be seen in cyberspace
Observable

Cybox

- 90+ Object Types
 - Files (names, hashes, ...)
 - Addresses (IP, e-mail, domains, ...)
 - E-mails (subject, sender, attachments, ...)
 - Registry Keys
- Patterning support
 - Wildcards
 - Compositional logic
- Events (e.g. File A downloads File B)
Examples

<table>
<thead>
<tr>
<th>IP</th>
<th>192.168.1.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash</td>
<td>d99a74fbe169e3eba0...</td>
</tr>
<tr>
<td>Traffic</td>
<td>192.168.1.4 -> 10.10.1.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Filename Pattern</th>
<th>File/File_Name [Contains] bad.exe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Email Regex</td>
<td>Email/Subject [Matches] BAD.+STUFF</td>
</tr>
</tbody>
</table>
XML

IP Address:

```xml
<cybox:Observable id="example:observable-c8c32b6e-2ea8-51c4-6446-7f5218072f27">
  <cybox:Object id="example:object-d7fcce87-0e98-4537-81bf-1e7ca9ad3734">
    <cybox:Properties xsi:type="AddressObject:AddressObjectType" category="ipv4-addr">
      <AddressObject:Address_Value>198.51.100.2</AddressObject:Address_Value>
    </cybox:Properties>
  </cybox:Object>
</cybox:Observable>
```

Email Subject Pattern:

```xml
<indicator:Observable id="example:Observable-e9926796-6b52-463c-8be1-0ab66e9adb1c">
  <cybox:Object id="example:EmailMessage-38afa5c9-ef26-4948-928b-0230521c67b7">
    <cybox:Properties xsi:type="EmailMessageObj:EmailMessageObjectType">
      <EmailMessageObj:Header>
        <EmailMessageObj:Subject condition="StartsWith">[IMPORTANT] Please Review Before</EmailMessageObj:Subject>
      </EmailMessageObj:Header>
    </cybox:Properties>
  </cybox:Object>
</indicator:Observable>
```
Indicator

Pattern for something you might see and **what it means** if you see it

- *Patterns* are represented using CybOX
- *What it means* is represented via a TTP or Campaign
- Also includes context, such as potential courses of action, timeframes, and likely impact
Examples

C2 1.2.3.x = C2 for Actor Z
Malware h99a74... = PIVY v423
Phishing E-mail from x@x = phishing
<stix:Indicators>
 <stix:Indicator id="example:indicator-a932fcc6-e032-176c-126f-cb970a5a1ade" xsi:type='indicator:IndicatorType' timestamp="2014-05-08T09:00:00.000000Z">
 <indicator:Title>File hash for Poison Ivy variant</indicator:Title>
 <indicator:Type xsi:type="stixVocs:IndicatorTypeVocab-1.0">File Hash Watchlist</indicator:Type>
 <indicator:Observable id="example:Observable-7d6f87bb-b4cd-42dd-b655-72557e9ea79f">
 <cybox:Object id="example:File-91040dc2-28d8-4925-bfe8-6b50d300afe1">
 <cybox:Properties xsi:type="FileObj:FileObjectType">
 <FileObj:Hashes>
 <cyboxCommon:Hash>
 <cyboxCommon:Type xsi:type="cyboxVocs:HashNameVocab-1.0">SHA256</cyboxCommon:Type>
 <cyboxCommon:Simple_Hash_Value condition="Equals">ef53f25...</cyboxCommon:Simple_Hash_Value>
 </cyboxCommon:Hash>
 </FileObj:Hashes>
 </cybox:Properties>
 </cybox:Object>
 </indicator:Observable>
 <indicator:Indicated_TTP>
 <stixCommon:TTP idref="example:ttp-e610a4f1-9676-eab3-bcc6-b2768d58281a" />
 </indicator:Indicated_TTP>
 </stix:Indicator>
</stix:Indicators>
Incident

Information about a cybersecurity *investigation* or *incident*.

- Victim identity
- Impacted assets and business functions
- Attribution to a threat actor or campaign
- Leveraged TTPs (malware, attack patterns, etc)
- Indicators that detected it
- Exploit targets that were used to gain entry
- Times and actions
Examples

<table>
<thead>
<tr>
<th>Basic</th>
<th>System XYZ has PIVY</th>
</tr>
</thead>
<tbody>
<tr>
<td>APT</td>
<td>Systems 3,4,7 owned by ACME, Inc. have malware. APT31 is suspected.</td>
</tr>
</tbody>
</table>
<stix:Incident id="example:incident-8236b4a2-abe0-4b56-9347-288005c4bb92" timestamp="2014-11-18T23:40:08.061362+00:00" xsi:type='incident:IncidentType' version="1.2">
 <incident:Title>Breach of Cyber Tech Dynamics</incident:Title>
 <incident:Time>
 <incident:Initial_Compromise precision="second">2012-01-30T00:00:00</incident:Initial_Compromise>
 <incident:Incident_Discovery precision="second">2012-05-10T00:00:00</incident:Incident_Discovery>
 <incident:Restoration_Achieved precision="second">2012-08-10T00:00:00</incident:Restoration_Achieved>
 <incident:Incident_Reported precision="second">2012-12-10T00:00:00</incident:Incident_Reported>
 </incident:Time>
 <incident:Description>Intrusion into enterprise network</incident:Description>
 <incident:Reporter>
 <stixCommon:Description>The person who reported it</stixCommon:Description>
 <stixCommon:Identity id="example:Identity-cd64aaa6-b1c0-4026-8ea1-14ff5a19e5fb">
 <stixCommon:Name>Sample Investigations, LLC</stixCommon:Name>
 </stixCommon:Identity>
 <stixCommon:Time>
 <cyboxCommon:Produced_Time>2014-03-11T00:00:00</cyboxCommon:Produced_Time>
 </stixCommon:Time>
 </incident:Reporter>
 <incident:Victim id="example:Identity-dd8637b7-51b4-48f0-9e3c-a2b23b3a2dd7">
 <stixCommon:Name>Cyber Tech Dynamics</stixCommon:Name>
 </incident:Victim>
 <incident:Impact_Assessment>
 <incident:Effects>
 <incident:Effect xsi:type="stixVocabs:IncidentEffectVocab-1.0">Financial Loss</incident:Effect>
 </incident:Effects>
 </incident:Impact_Assessment>
 <incident:Confidence timestamp="2014-11-18T23:40:08.061379+00:00">
 <stixCommon:Value xsi:type="stixVocabs:HighMediumLowVocab-1.0">High</stixCommon:Value>
 </incident:Confidence>
</stix:Incident>
Tactics, Techniques, and Procedures (TTP)

Adversary behavior and resources, including malware, attack patterns, exploits, infrastructure, tools, personas, & targeting.

- Includes information about intended effect

- Malware is extensible via MAEC

- Though all used through the TTP construct, should only be used individually
 - i.e. do not combine one TTP with both a malware instance and an attack pattern
Examples

<table>
<thead>
<tr>
<th>Malware</th>
<th>PIVY Variant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attack</td>
<td>SQL Injection</td>
</tr>
<tr>
<td>Targeting</td>
<td>Retail Sector</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>C2 Server = 1.23.4.5</td>
</tr>
</tbody>
</table>
XML: Malware

```xml
<stix:TTP xsi:type="ttp:TTPType" id="example:ttp-7d9fe1f7-429d-077e-db51-92c70b8da45a">
  <ttp:Title>Poison Ivy Variant v4392-acc</ttp:Title>
  <ttp:Behavior>
    <ttp:Malware>
      <ttp:Malware_Instance xsi:type="stix:maec:MAEC4.1InstanceType">
        <ttp:Type xsi:type="stixVocabs:MalwareTypeVocab-1.0">Remote Access Trojan</ttp:Type>
        <ttp:Name>Poison Ivy Variant v4392-acc</ttp:Name>
        <stix:maec:MAEC id="example:package-2fb96bef-1b11-436e-af4a-15588ac3198b" schema_version="2.1">
          <!-- MAEC Content Here -->
          <maecPackage:Malware_Subjects>
            <maecPackage:Malware_Subject id="example:Subject-57cd4839-436e-1b11-af4a-15588ac3198b">
              <maecPackage:Malware_Instance_Object_Attributes>
              </maecPackage:Malware_Instance_Object_Attributes>
            </maecPackage:Malware_Subject>
          </maecPackage:Malware_Subjects>
        </stix:maec:MAEC>
      </ttp:Malware_Instance>
    </ttp:Malware>
  </ttp:Behavior>
</stix:TTP>
```
<stix:TTPs>
 <stix:TTP xsi:type="ttp:TTPType" id="example:ttp-4fde045a-b25f-f035-e8d0-29c9d5130cd9"
 timestamp="2014-05-08T09:00:00.000000Z">
 <ttp:Title>Victim Targeting: Customer PII and Financial Data</ttp:Title>
 <ttp:Victim_Targeting xsi:type="ttp:VictimTargetingType">
 <ttp:Targeted_Information xsi:type="stixVocabs:InformationTypeVocab-1.0">Information Assets - Customer PII</ttp:Targeted_Information>
 <ttp:Targeted_Information xsi:type="stixVocabs:InformationTypeVocab-1.0">Information Assets - Financial Data</ttp:Targeted_Information>
 </ttp:Victim_Targeting>
 </stix:TTP>
</stix:TTPs>
Exploit Target

Vulnerabilities, weaknesses, and misconfigurations in infrastructure that make it vulnerable to attack

- Includes references to CVE, CCE, and CWE
 - Extension for CVRF
- Like TTP, only use it for one at a time
Examples

<table>
<thead>
<tr>
<th>Vulnerability</th>
<th>Heartbleed (CVE-2014-0160)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weakness</td>
<td>Improper String Handling</td>
</tr>
</tbody>
</table>
<stix:Exploit_Targets>
 <stixCommon:Exploit_Target xsi:type="et:ExploitTargetType"
 id="example:et-48a276f7-a8d7-bba2-3575-e8a63fcd488"
 timestamp="2014-05-08T09:00:00.000000Z">
 <et:Title> Javascript vulnerability in MSIE 6-11 </et:Title>
 <et:Vulnerability>
 <et:CVE_ID> CVE-2013-3893 </et:CVE_ID>
 </et:Vulnerability>
 </stixCommon:Exploit_Target>
</stix:Exploit_Targets>
Campaign

Pattern of ongoing activity with a **common purpose or goal**

- Pattern of ongoing activity is primarily via relationships
 - Incidents
 - Indicators
 - TTPs

- Includes intended effect
- Distinct from threat actor
Examples

<table>
<thead>
<tr>
<th>Campaign Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APT</td>
<td>Campaign against U.S. industry</td>
</tr>
<tr>
<td>Crime</td>
<td>Campaign against systems at big box retailers</td>
</tr>
</tbody>
</table>
<stix:Indicators>
 <stix:Indicator id="example:indicator-c43a0a05-e8d2-4f64-ae37-3f3fb153f8d9" timestamp="2014-09-09T19:58:39.609000+00:00" xsi:type='indicator:IndicatorType' negate="false" version="2.1.1">
 <indicator:Title>IP Address for known C2 Channel</indicator:Title>
 <indicator:Type xsi:type="stixVocabs:IndicatorTypeVocab-1.1">IP Watchlist</indicator:Type>
 <indicator:Observable id="example:Observable-f1712715-9bcd-404a-bf47-76504cf1232c">
 <cybox:Object id="example:Address-c4d21d91-2bea-4b19-ac53-c513f1b1bc51">
 <cybox:Properties xsi:type="AddressObj:AddressObjectType" category="ipv4-addr">
 <AddressObj:Address_Value condition="Equals">10.0.0.</AddressObj:Address_Value>
 </cybox:Properties>
 </cybox:Object>
 </indicator:Observable>
 <indicator:Related_Campaigns>
 <indicator:Related_Campaign>
 <stixCommon:Campaign idref="example:Campaign-b549a58c-afd9-4847-85c3-5be13d56d3cc" timestamp="2014-09-09T19:58:39.609000+00:00" />
 </indicator:Related_Campaign>
 </indicator:Related_Campaigns>
 </indicator>
</stix:Indicators>

<stix:Campaigns>
 <stix:Campaign id="example:Campaign-b549a58c-afd9-4847-85c3-5be13d56d3cc" timestamp="2014-09-09T19:58:39.609000+00:00" xsi:type='campaign:CampaignType' version="1.2">
 <campaign:Title>Operation Omega</campaign:Title>
 </stix:Campaign>
</stix:Campaigns>
Threat Actor

Information about threat actor groups and individuals

- Includes:
 - Extensive identity information via OASIS CIQ
 - Assessments of maturity, intent, and resources

- Distinct from campaign
Examples

<table>
<thead>
<tr>
<th>Category</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual</td>
<td>KDZ-23, Amateur/Crime</td>
</tr>
<tr>
<td>Group</td>
<td>APT1, APT</td>
</tr>
<tr>
<td>ID Info</td>
<td>Nationality: American</td>
</tr>
</tbody>
</table>
Course of Action

Preventative or reactive responses to threat activity

- Includes:
 - Assessments of cost, efficacy, etc.
 - Structured COA to represent machine-readable courses of action

- Often used from incident or indicator
 - Incident to represent
Examples

Preventative	Install patch MSKB-234
Reactive	Clean the box and rebuild
<stix:Course_Of_Action id="example:coa-495c9b28-b5d8-11e3-b7bb-000c29789db9" xsi:type='coa:CourseOfActionType' version='1.2'>
 <coa:Title>Block traffic to PIVY C2 Server (10.10.10.10)</coa:Title>
 <coa:Stage xsi:type="stixVocabs:COAStageVocab-1.0">Response</coa:Stage>
 <coa:Type xsi:type="stixVocabs:CourseOfActionTypeVocab-1.0">Perimeter Blocking</coa:Type>
 <coa:Objective>
 <coa:Description>Block communication between the PIVY agents and the C2 Server</coa:Description>
 <coa:Applicability_Confidence>
 <stixCommon:Value xsi:type="stixVocabs:HighMediumLowVocab-1.0">High</stixCommon:Value>
 </coa:Applicability_Confidence>
 </coa:Objective>
 <coa:Parameter_Observables cybox_major_version="2" cybox_minor_version="1" cybox_update_version="0">
 <cybox:Observable id="example:Observable-356e3258-0979-48f6-9bce-6823eeef9a7d">
 <cybox:Object id="example:Address-df3c710c-f05c-4edc-a753-de4852048950">
 <cybox:Properties xsi:type="AddressObj:AddressObjectType" category="ipv4-addr">
 <AddressObj:Address_Value>10.10.10.10</AddressObj:Address_Value>
 </cybox:Properties>
 </cybox:Object>
 </cybox:Observable>
 </coa:Parameter_Observables>
 <coa:Impact>
 <stixCommon:Value xsi:type="stixVocabs:HighMediumLowVocab-1.0">Low</stixCommon:Value>
 <stixCommon:Description>This IP address is not used for legitimate hosting so there should be no operational impact.</stixCommon:Description>
 </coa:Impact>
 <coa:Cost>
 <stixCommon:Value xsi:type="stixVocabs:HighMediumLowVocab-1.0">Low</stixCommon:Value>
 </coa:Cost>
 <coa:Efficacy>
 <stixCommon:Value xsi:type="stixVocabs:HighMediumLowVocab-1.0">High</stixCommon:Value>
 </coa:Efficacy>
</stix:Course_Of_Action>
Report

A collection of content related to a single subject

- Includes:
 - References to the content included in the report
 - Title, description, author, and other metadata

- Used to represent "analysis reports" and other types of threat reports
Examples

<table>
<thead>
<tr>
<th>Major Report</th>
<th>Mandiant’s APT1 Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Report</td>
<td>IB-4232</td>
</tr>
</tbody>
</table>
 <report:Header>
 <report:Title>Report on Adversary Alpha's Campaign against the Industrial Control Sector</report:Title>,
 <report:Description>Adversary Alpha has a campaign against the ICS sector!</report:Description>
 </report:Header>
 <report:Campaigns>
 <report:Campaign idref="example:campaign-1855cb8a-d96c-4859-a450-abb1e7c061f2" xsi:type='campaign:CampaignType'/>
 </report:Campaigns>
</stix:Report>
Example: Retailer Malware

You’re a threat analyst at a major retailer, STB, Inc.

One of your front line employees complains about weird errors. Upon investigating, IT finds BP.trojan on their system.

Your CTI system pulls up a report from US-CERT attributing that variant to Ugly Duckling. They also indicate that BlackPOS is often used by that actor and give a file hash and response options.

Your investigation with that data uncovers several more infestations. Additionally, you discover a new variant of BlackPOS with a different hash.
Information Sharing

What do you share?

STIX lets you choose what to share
...and what not to share
...and lets you relate it all together
Trusted, Automated Exchange of Indicator Information

- Automated machine-to-machine sharing over HTTP
- Supports a wide variety of sharing models
- Active community of developers and analysts
- Becoming international standard in OASIS

A protocol for exchanging cyber threat intelligence.
What is TAXII?

- Standardizes exchange of cyber threat information
- A set of specifications any software can implement

TAXII is NOT

- A specific sharing program
 - but sharing programs can use it
- Software
 - but software can use it to share information
- Mandate particular trust agreements or sharing
 - instead, use it to share what you want with the parties you choose
Flexible Sharing Models

- Most sharing models are variants of these three basic models
 - TAXII can support participation in any of these models or multiple models simultaneously
TAXII Features

- **Minimal requirements imposed on data consumers**
 - Does not require data consumers to field internet services or establish a particular security capability

- **Minimal data management requirements on data producers**
 - Does not require use of particular data management technologies or constrain how producers manage access to their data

- **Flexible sharing model support**
 - Does not force a particular sharing model on users

- ** Appropriately secure communication**
 - Supports multiple security mechanisms without forcing adoption of unnecessary measures

- **Push and Pull content dissemination**
 - Users can exchange data using either or both models

- **Flexible protocol and message bindings**
 - Does not require a particular network protocol or message format
TAXII Services

• TAXII defines four Services
 – Discovery – A way to learn what services an entity supports and how to interact with them
 – Collection Management – A way to learn about and request subscriptions to Data Collections
 – Inbox – A way to receive pushed content (push messaging)
 – Poll – A way to request content (pull messaging)

• Each service is optional – implement only the ones you wish
 – You can have multiple instances of each service

• Services can be combined in different ways for different sharing models
Hub & Spoke Example

- **Spoke 1**: Get connection info
- **Hub**: Pull recent data from the hub
- **Spoke 2**: Push new data to the hub
- **Spoke 3**: Subscribe to data collections
- **Spoke 4**: Push recent data to a spoke
- **Client**

Discovery, Collect Manage, Poll, Inbox

HSSEDI is a trademark of the U.S. Department of Homeland Security (DHS). The HSSEDI FFRDC is managed and operated by The MITRE Corporation for DHS.
STIX & TAXII

Analyzing and Sharing Cyber Threat Intelligence