
Embargoing the Open
Challenges for Temporary Secrecy in Open-Source

Red Hat Product Security

Red Hat - Public - FIRST Technical Colloquium

Product Security Overview
Red Hat Product Security provides the guidance, stability and
security needed to confidently deploy enterprise solutions.

Red Hat Product Security ensures Red Hat products are secured by
● Identifying security issues
● Assessing the severity
● Creating updates
● Notifying customers
● Distributing updates

About Us

 Fábio Olivé Vulnerability Response Manager | Red Hat Product Security

 CRob Sr. Program Manager | Red Hat Product Security

He does actual work

He draws circles and boxes!

Embargoes

Embargoed issues are those that, due to their severe impact, are shared on
a strictly need-to-know basis, between reporter and vendors, so that they
have a chance to prepare updates before the flaw goes public, minimizing
the impact on the end-users.

Red Hat prefers to work with short embargo periods (few weeks), although
we fully respect longer embargoes owned by external entities.

Wide open development processes pose interesting challenges here.

THANKS FOR COMING!

Enjoy the rest of the conference!

Just kidding…..

(maybe)

Culture Shock

RH prides itself on transparency and openness….
intentionally hiding something is fairly difficult for our
employees, partners, and customers to take from us.

And the REALLY fun thing….

Frequently the people that need to work on the flaw
aren’t even Red Hat employees.

Navigating the upstream seas is challenging by itself, let
alone keeping volatile secrets.

A (Brief) Review of Historical
Industry Disclosure Behaviour

The Stone Age
➢ Most companies didn’t always understand security
➢ Some would threaten reporters of flaws
➢ Many relied on the code being a black box; Could

somewhat easily deny flaws
➢ Was easy to keep embargoes, though, sometimes forever

;-)

The Modern Age

➢ Security through obscurity is dead
➢ Companies now mostly grok security
➢ Have security contacts and disclosure processes
➢ Bug bounties versus the 0day market
➢ The Internet forces companies to acknowledge flaws;

so embargoes must be kept to reasonable periods

How Open Source Differs

➢ Projects did tarball
releases

➢ People would email
authors with patches

➢ Emphasis on free code
drops, no provision for
an open development
process

➢ Very easy to keep
embargoes

➢ Not just open code,
but open process

➢ Major win for IT and
innovation

➢ Many people
contributing to the
solution

➢ Makes embargoes
very tricky, though

Old School New School

How Red Hat Works (ish)

From Pet Project to Enterprise-class

Trusting Your Supply Chain

● Where does it come from?
● Who is your 3rd party’s 3rd party?
● Can you trust it?

Kinds of upstream projects
Good

Have security contacts, ability to coordinate
Bad

Dead projects, for-fun projects
Ugly

Silent fixes, no regard for Security

And our customers expect the EXACT same experience for all of them!

An Overview of Vulnerabilities over time

Vision Statement
To help protect
customers from
meaningful security
concerns when using
Red Hat products.

2015 view - Red Hat Vulnerability Sources
Issues Percentage Source Advance?

8 .6% CERT Y

49 3.6% CVE N

22 1.6% Distros Y

14 1% Individual N

51 3.8% Individual Y

808 59.3% Mailing List N

36 2.6% Other Vendor N

167 12.2% Red Hat Y

202 14.8% Relationship Y

We get advanced notice on ~33% of vulnerabilities

Open Source Tensions
on Embargos

The code is public...
➢ The foremost tension is that the code, and thus the flaws, are public

and wide open ...Not everyone notices the flaws, thankfully.
➢ We have to assume that if someone reports a flaw, others could also

know about it.
➢ High sense of urgency, can’t “sit” on issues.

...The process is wide open
➢ How can one prepare an update in private, using public/open

infrastructure?
➢ Can open projects maintain private infra “for the Greater Good” of

handling Security issues?

Upstreams may be dead

➢ Projects may lose steam
over the years

➢ Forks cause projects to
lose developers

➢ What if the last commit on
a project you use was 10
years ago by someone
who is now retired?

Other Upstream Concerns

➢ One or a few developers doing it for fun; generally they cannot
provide adequate security response or coordination

➢ Lack of security training and understanding of impact of
unintended consequences of changes

➢ Could still be providing awesome innovation, though!
➢ To Fork or not to Fork….

Is it a Bug or a Vulnerability?
➢ Some upstreams treat flaws and bugs equally

➢ Near equivalent to Full Disclosure (without thought
about downstream impact)

➢ Resistance to requesting CVEs

“Silent fixes”

➢ Some projects will just go fix something in their
public project, without sufficient information given to
understand the security implications (downplaying
severity).

➢ Commit now, “release” later - We can’t break the
embargo [it’s not our embargo]

“Pure” community distributions
➢ Hard to demand secrecy from volunteers
➢ Hard to manage things like encryption keys
➢ Lack of private infrastructure
➢ Takes time to earn trust from other players

What We’ve Learned So Far…
(and continue to everyday…)

It’s not all bad

The majority of people out there
are genuinely trying to do the Right
Thing.

There’s a lot of goodwill and
passion inherent to Open-Source.

Short embargo periods work best

➢ Usually 2 weeks of embargo time works great!
○ That’s our average
○ Large enough to research and test; Short enough to keep focus

➢ When the unembargo date comes, don’t hold back.
➢ Give as much clear and accurate information as

possible, enabling others to evaluate their own risk,
as well as fend off media hype.

Bugfix versus Mitigation

➢ Providing mitigation steps is almost
as important (sometimes more
important) as providing the actual
bugfix.

➢ Many users will take a long time to
update, but can change
configurations easily.

Vendors: Work with and Help upstreams
➢ Be the older, experienced brother
➢ Help tiny upstreams coordinate disclosure
➢ Coordinate with other vendors to adopt dead

upstreams

Upstreams: Some advice

➢ Have a clearly named security contact or team, and
guidelines to get in touch - Most researchers will
happily abide

➢ Have a simple page up with changelogs, or some
other mechanism like RSS feeds

➢ There is a FIRST SIG working on best practices for
this, get involved with it

Closing Thoughts
➢ Treat researchers with respect (even the small guys might

have something of value to share to help make you
better).

➢ Researchers are combing over ALL patches to see what
we’re doing and if we’re doing what we said we did.

➢ Need to be faster (agile) with delivery of updates.
➢ Point is not to ruin the fun of coding OSS, but to instruct,

guide and teach so they continue innovating.
➢ When in doubt, talk to oss-sec!

“Giving calm, timely, and accurate information is
best” - Cliff

issue reporting: secalert@redhat.com

https://access.redhat.com/security/team/contact/

Tweets: @RedHatSecurity

Questions?

CRob@redhat.com
@RedHatCRob

olive@redhat.com
@FabioOlive0

mailto:secalert@redhat.com
https://access.redhat.com/security/team/contact/
https://access.redhat.com/security/team/contact/
mailto:CRob@redhat.com
mailto:CRob@redhat.com
mailto:olive@redhat.com
mailto:olive@redhat.com

