A Quantitative Cross Comparative Analysis of Tools for Anamoly Detection

Wayne Routly
DANTE
Riga, 20th Jan. 2008
Quite obviously....

- For a small organization, doing a quantitative cross comparison of commercial tools for network security is **lengthy** and **difficult**
Moving on...

1. The Problem
2. The Tools
3. What Are We Looking For?
4. The Process
5. The RESULTS!!!
6. In Conclusion
The Problem….

1. …. A Transit Network

2. +/- 10 Million Speaking Hosts Per Day

3. 10Gbps Links

4. Unusual Traffic
 1. Large FTP Transfers
 2. Legitimate SSH & DNS Traffic

5. Intercontinental Peerings
The Difficult Part….

- You must give the tools the same data
- You must understand different tool terminology
- You must tune the tools to give “similar” results
 - And you’ll never get them to see exactly the same things…
- You must not just trust the tool results, but verify them with other means
 - Raw NetFlow analysis via NfSen, exchange of evidence with friendly CERTs
- You must work out your success criteria
Lengthy…very lengthy

- It took us **more than one year**
- Preparation: 6-7 months
 - Shortlist vendors, get in touch with them, convince them to engage in a *comparative* trial with no upfront commitment, make them spell out a price figure even before the trial, set up the legal bit, get the boxes delivered, installed and configured
 - One (established) vendor pulled out (we remained with 3)
- Tool learning curve and tuning: 3-4 months
- Comparative testing: 1 month
- Result analysis and reporting: 1 month
What if you can’t afford all that?

1. You decide on the basis of vendor’s visits (cool! 😊)
2. You buy the cheapest, or the more expensive, but not what you need (cool! 😊)
3. You buy what others have bought, for their own network and needs (cool! 😊)
4. You don’t buy at all (cool! 😊)

- We’re showing some results, today, but we don’t want you to convince to buy either or the two (best performing tools) we tested
- But we’d very much like to discuss how small CERTs could share these experiences (and that’d be really cool! 😊)
The Good Stuff…the Tools

- **StealthWatch** – Lancope
 - Per Host Behavioral Analysis
 - Requires 1 Point to be Defined
 - Normally Found in Campus Networks

- **Netreflex** - Guavus
 - Fuses BGP & ISIS Data
 - Creates a 18 x 18 Router Matrix
The Process...

• 13 days of cross comparative testing (balancing MM - WR)

• 1066 Investigated anomalies, results precision bounds estimated

• 14 Anomaly Types

• Analyzed raw netflow using nfsen

• Certain Events forwarded to CERTS for Confirmation
THE RESULTS
True and False Positives

SW 32.8 anomalies per day, followed by NetReflex (21.7)

Number of false positives is 28% in SW, 21% in NetReflex
Type of Anomalies

- Scan vs DoS
- Other?
- No. of Anomalies Per Tool
Scan types

<table>
<thead>
<tr>
<th></th>
<th>StealthWatch</th>
<th>Net Reflex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port scans (all ports)</td>
<td>Rare</td>
<td>Some</td>
</tr>
<tr>
<td>Ports 135, 139, 445</td>
<td>A lot</td>
<td>- (*)</td>
</tr>
<tr>
<td>(windows file sharing)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port 22 (ssh)</td>
<td>A lot</td>
<td>A lot</td>
</tr>
<tr>
<td>Port 23 (telnet)</td>
<td>Some</td>
<td>-</td>
</tr>
<tr>
<td>Port 53 (DNS)</td>
<td>-</td>
<td>Some</td>
</tr>
<tr>
<td>Port 80 (Http)</td>
<td>Rare</td>
<td>-</td>
</tr>
<tr>
<td>Port 1433 (SQL)</td>
<td>Rare</td>
<td>- (↑)</td>
</tr>
<tr>
<td>ICMP scans (ping)</td>
<td>Some</td>
<td>-</td>
</tr>
</tbody>
</table>
(D)DoS types

<table>
<thead>
<tr>
<th></th>
<th>StealthWatch</th>
<th>NetReflex</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDP (small packets)</td>
<td>Rare</td>
<td>A lot</td>
</tr>
<tr>
<td>TCP (syn floods)</td>
<td>Rare</td>
<td>Some</td>
</tr>
<tr>
<td>ICMP floods (large packets)</td>
<td>Rare</td>
<td>-</td>
</tr>
</tbody>
</table>
Origin of Anomalies (1/2)

- Stealthwatch & NRENS
- Unknown?
- Netreflex Balanced
Origin of Anomalies (2/2)

- DWS Clients = GRNET
- Several?
- International SRC’s versus NRENs?

Several: multipoint origin
Unknown: could not track origin
Others: 1 single, identified origin (but not within top 3)
Destination of Anomalies

- SW, Scans & NRENS
- NR versus SW

Several: multipoint dest.
Unknown: could not track dest.
Others: 1 single, identified dest. (but not within top 3)
Origin and type: SealthWatch

- SCANS Feature Predominantly
- Primarily NRENS as SRCs
Origin and type: NetReflex

- Fair Anomaly Type Distribution
- Dispersion of NREN & Non NREN SRCs
In Conclusion

• Acquired Anomaly Detection Tools To Trial
• Installed, Configured, Tweaked….and Tweaked Again
• Captured & Investigated over 1000 events in 13 days
• Cross-compared results amongst all tools and validated results
• …..and the decision is ??????? 🙄😂😄
Questions?

THANK-YOU