
Turla - development &

operations
THE BIG PICTURE

ANDRZEJ DERESZOWSKI

Picture from deviantart.com

Agenda

 Introduction

 Part I – Development

 Part II – Operations

 How to protect yourself

 Attribution ?

A bit of history from my perspective

 2008 – Agent.BTZ – threat that hit Pentagon

 2009 – Some Agent.BTZ incidents here and there

 2011 – me, tecamac and other researchers get together to analyze
certain complex threat

 Beginning 2013 – we started distributing our report and help others

handle infections

 Beginning 2014 – a series of discoveries started by G-Data and BAE

Systems

What has been published so far ?

 ThreatExpert – “Agent.btz - A Threat That Hit Pentagon” – Nov 2008

 Trend Mirco - Windows XP/Server 2003 Zero-Day Payload Uses Multiple Anti-
Analysis Techniques – Dec 2013

 G-DATA – “Uroburos – Highly complex espionage software with Russian roots” –
Feb 2014

 BAE Systems – “Snake Campaign & Cyber Espionage Toolkit” – Mar 2014

 Deresz&tecamac – “Uroburos – The Snake Rootkit” – Mar 2014

 Sourcefire VRT – “Snake Campaign: A few words about the Uroburos Rootkit” –
Apr 2014

 F-Secure – “Anatomy of Turla Exploits” – May 2014

 Kernelmode.info threads – Jun 2014

 CIRCL – “TR-25 Analysis - Turla / Pfinet / Snake/ Uroburos” – Jul 2014

 Symantec – “Turla: Spying tool targets governments and diplomats” – Aug 2014

 Kaspersky – “The Epic Turla Operation – Aug 2014

Many publications – many names

 Currently there is a lot of confusion in naming scheme

 Final stage:

Agent.BTZ/Snake/Turla/Uroburos/Carbon/Pfinet/Snark/Sengoku

 Reconaissance stage:

Epic/Tavdig/WipBot/WorldCupSec/TadjMakhal

 NOT all of them decribe the same « product »

PART I

Development

What is Turla ?

 Family of related sophisticated backdoor software

 Name comes from Microsoft detection signature – anagram of Ultra

(Ultra3 was a name of the fake driver)

 All related by shared code

Code history

Agent.BTZ

(2006)

Pfinet

(2009)

Snake

(2011)

Agent.BTZ:

- Sengoku

Pfinet:

- Carbon

- Usermorde-centric Snake

Snake:

- Urouros

- Snark

- Kernelmode-centric Snake

Features: summary

Feature Agent.BTZ Pfinet Snake

Storage Hidden folder Encrypted VFS Encrypted VFS

Configuration Hardcoded Text file Key-value store (queue)

Networking Separate exes Userland payloads Kernel+userland

Incomming transports No No Yes

VirtualBox exploit to load the driver

Source: Sourcefire VRT

Uses a vulnerability in old (yet still signed!) VirtualBox driver to load its own

driver
Source: F-Secure

Source: kernelmode.info

Pfinet

Snake

Udis86: on-the-fly manipulation of

dissassembled code in live kernel
Source: deresz & tecamac

Agent.BTZ

Pfinet

Snake

Hooking engine – Udis86 reused
Source: deresz & tecamac

Agent.BTZ

Pfinet

Snake

Encrypted VFS

 Implemented in Carbon and Snake

 CAST 128 encryption used

 Decryption/encryption implemented on low level by

hooking sector processing mechanisms:

Source: deresz & tecamac

Pfinet

Snake

Encryped VFS

Encrypted container located in %windows%\$NtUninstallQ817473$\hotfix.dat

Source: deresz & tecamac

Two volumes: permanent (mapped to a file on a real file system)

and volatile storage

Pfinet

Snake

Configuration mechanism

 Agent.BTZ:

 Config hardcoded in the user mode executables

 Pfinet:

 Configuration file stored on the VFS in a flat file: config.txt

 Transports implemented in user mode

 Usermode payloads hardcoded in the rootkit body:

 cryptoapi.dll

 inetpub.dll

Configuration mechanism

 SNAKE:

 Uses « queue » file that contains configuration parameters in the form of

key/value pairs

 « queue » file located on the VFS

 Queue contains:

 Transports configuration

 Userland payloads:

 inj_snake_Win32.dll – a counterpart of a rootkit for userland

 inj_services_Win32.dll

 rkctl_Win32.dll

Modular transports – channel elements
Snake

Type 5 (s)

np \\.\pipe\P

enc

frag

reliable

Type 2 (m) Type 4 (d)

doms

domc

udp network

Type 3 (t)

t2mmpx

Type 1 (b)

tcp network

sicmp

m2d m2b

converters

d2s

Modular transports – combined together

frag enct2mmpx reliable doms np \\.\pipe\P

domc np \\.\pipe\P
Datagram

covert channel

enc frag np \\.\pipe\P
HTTP covert

channel

Kernel mode

User
mode

Snake

enc.frag.np

domc.np

frag.enc.reliable.doms.np

Protocols to choose

 Datagram covert channels:

- Raw layer 2 (Ethernet type 0x7FF)

- Raw ICMP

- Raw UDP - DNS

- Raw IP

 Stream covert channels and activation triggers:

- Raw TCP

- HTTP: URL parameters of an HTTP request

- HTTP: Hidden in HTTP headers

- HTTP: Hidden in local part of the URL

- SMTP: triggered by a recipient e-mail address

Examples of incoming transports –

covert channels

SMTP covert channel – rootkit resides on the mail server of pwned-prg.com

HELO whatever.com

250 Hello whatever.com, I am glad to meet you

MAIL FROM: <you.bet@you.are.not>

250 OK

RCPT TO: <trueburger@pwned-org.com>

250 OK

354 End data with <CR><LF>.<CR><LF>

<commands>

.

Recipient user name must be 10 characters

Last two characters (in red) are the checksum calculated

on the first 8:

username[9] == sum / 26 + 65

username[10] == 122 - sum % 26

Examples of incoming transports

HTTP covert channel – rootkit resides on the web server of pwned-prg.com

GET / HTTP/1.1

SomeHeader: trueburgerYmFzZTY0ZW5jb2RlZCBzdHJpbmcKYmFz

…

- Same signature calculated on the first 10 bytes of the header value

- Base 64 content that follows is decoded and XOR-ed back with raw buffer
starting at offset 0

- First four bytes of the resulting content is a magic value, by default set to

0xDEADBEEF but changed by the initialization queue

SNORT signatures – difficult to create !

Possible to create Surricata sigs with the use of LUA

Big picture view of compromised

network

Developers

 Vlad, gilg, urik

 Version control info present in some of the samples:

$Id: snake_config.c 5204 2007-01-04 10:28:19Z vlad $

$Id: mime64.c 12892 2010-06-24 14:31:59Z vlad $

$Id: event.c 14097 2010-11-01 14:46:27Z gilg $

$Id: named_mutex.c 15594 2011-03-18 08:04:09Z gilg $

$Id: nt.c 20719 2012-12-05 12:31:20Z gilg $

$Id: ntsystem.c 19662 2012-07-09 13:17:17Z gilg $

$Id: rw_lock.c 14516 2010-11-29 12:27:33Z gilg $

$Id: rk_bpf.c 14518 2010-11-29 12:28:30Z gilg $

$Id: t_status.c 14478 2010-11-27 12:41:22Z gilg $

$Id: l1_check.c 4477 2006-08-28 15:58:21Z vlad $

$Id: m2_to_b2_stub.c 4477 2006-08-28 15:58:21Z vlad $

$Id: m_frag.c 8715 2007-11-29 16:04:46Z urik $

Who are they ?

PART II

Operations

Hmm, which group are we talking

about ?

 Not sure we can speak about one « Turla group »

 Turla is just one of the tools « Turla group(s) » uses

 There is however a lot of common things …

 While the tool itself is quite impressive, operators that are using it are

sloppy …

Countries of interest

Source: BAE Systems

Publicly known victims

Turla: Staged operation

 Stage 0 – attack stage - infection vector

 Stage 1 – reconaissance stage - initial backdoor

 Stage 2 – lateral movements

 Stage 3 – « access established » stage – TURLA deployed

 On each stage they can quit if it turns out that the « non-interesting »

victim has been encountered

Stage 0: infection vector

 Traditional infection vector – spear phishing: exploits (CVE-2013-3346

+ CVE-2013-5065)

 Watering holes (strategic web compromise)

 “Adobe update” social engineering trick

 Java exploits (CVE-2012-1723), Adobe Flash exploits (unknown) or

Internet Explorer 6, 7, 8 exploits (unknown)

 Third party suppliers compromise

 No use of 0-day exploits (almost no)

Stage 0: Watering

holes mechanism

Source: Kaspersky Lab

Stage 0: Watering hole panel

Stage 0: Web shell

Stage 1: reconaissance stage

 Initial backdoor dropped – WipBot/Epic/TavDig

 Simple backdoor with a handful of commands

 Has no code in common with any variant of Turla but exports

functions with the same names: ModuleStart and ModuleStop

 Well desribed in Kaspersky Lab report:

Stage 1: Some interesting tricks

used in WipBot

 CVE-2013-3346 - zero day used together with a known exploit

 Sets ThreadHideFromDebugger – breaks debugging

 Creates a new process in suspended mode and maps the same
section of memory twice, in two different processes

 SetWindowsLong API call to start a thread in the newly created

process – breaks most malware sandboxes

 Jumps several times from one process to another

 Wipes out the PE section so that it is harder to rebuild the unpacked
executable

Source: Trend Micro

Stage 2: lateral movements

 Stage 1 C&C servers are easy targets – for example, they can be

caught in spear phishing e-mails and sandbox

 Stage 2 backdoor: So let’s replace this by a less known backdoor

 Go after Domain Admin credentials

 Further explore and compromise the network

Stage 3: Turla
 Network has been found interesting to explore long-term and exfiltrate

 Is fully compromised

 Turla dropped on chosen machines

 Usage of many other tools

 Some networks owned for years…

How to detect Turla ?

 Not very easy task …

 One fun story to tell 

 Do not only rely on vendors - talk to your partner organizations

 Establish relationships and share information !

 IOCs exchange is good but not enough these days:

 They are easy to change by the intruders

 Separate samples and infras used for different victims

 Good Yara sigs and custom detection tools can help

 Check your third party suppliers – for intruders it’s a perfect way to get
in

Divagations on attribution

 Development:

 Vlad, gilg, urik

 “Transmittion”, “Password it’s wrong” etc.

 Zagruzchik.dll

 Operations:

 Geographic distribution of infections

 Virustotal submission countries

 $default_charset = 'Windows-1251';

Questions ?

deresz@gmail.com

@deresz666

