CISCO SYSTEMS

PRNG in IOS

Gaus – PSIRT IM <gaus@cisco.com>

FIRST-TC, 2004-Feb

Overview

- How it started
- What it looked like
- How it was improved
- How was tested
- Possible further improvements

What were looking at

- "Big Bang", who knows how it looked like?
- Starry night, Copyright NASA, STScl, HubbleSite
- "Strange Attractors and TCP/IP Sequence Number Analysis" by Michal Zalewski

Cisco.com

It started by ISNs in TCP session

They should be unpredictable but they were not

29578/29614 (99.8784%)

[lcamtuf] Q A O P - move, Z U - zoom/unzoom, E R - rotate

FIRST-TC, 2004-Feb

© 2004, Cisco Systems, Inc. All rights reserved.

Improving ISNs

- One way is to make ISN as random as possible
- What exactly "random" means?
- Unpredictable and next-bit test
- The existing PRNG was not adequate for the purpose
- The solution is to introduce a new one

How PRNG works

Cisco.com

• The universal recipe is the same:

- > Take some fresh entropy and put it into a pot
- Add more entropy whenever you have a chance and stir it in
- Serve when needed but not forget to stir

Some mixing tools

More mixing tools

All Cisco.com

The challenge

Cisco.com

• Where to find entropy

- IOS is closed system and it does not have:
 - Hard disk
 - Mouse
 - Keyboard

Some unsuccessful ideas

- MAC or IP addresses
- Packet length, timing between packets
- Environmental temperature
- CPU fan rotation
- Wireless noise, microphone, camera
- "Something" from the memory

More promising ideas

- truerandom() function but IOS is not preemptive
- Timing between consecutive passes in a simple loop
- Time when the function is invoked
- "something" from the memory

How it looks today

- PRNG uses GF-based mixing function and it is extracted using MD5
- Entropy is slow to accumulate
- PRNG passes all statistical tests

x0 y0 Z1 vis 2147483648 (32) 0.00000

64389/100000 (64.3890%)

[lcamtuf] Q A O P - move, Z U - zoom/unzoom, E R - rotate

FIRST-TC, 2004-Feb

How to test a sequence

- How random is your "random" sequence?
- Is "111111111111111111111" more random than "01010101010101010101" or "10011010100101101"?
- We can only test for statistical properties of a sequence.

Tools used for testing

- Diehard
- NIST Statistical Test Suite
- Some others were tried but were not adequate

Diehard

- Not really user friendly
- Need some knowledge to interpret the results
- Very powerful
- Needs large input (~8*10^9 bits)

NIST STS

Cisco.com

Nicer interface

- Sometimes can be hard to select right parameters and input sequence length
- An par with Diehard

A sample of Diehard output

Allining Cisco.com

•••••••••••••••• This is the BIRTHDAY SPACINGS TEST :: :: :: Choose m birthdays in a year of n days. List the spacings :: :: between the birthdays. If j is the number of values that :: :: occur more than once in that list, then j is asymptotically :: :: Poisson distributed with mean $m^3/(4n)$. Experience shows n :: :: must be quite large, say $n \ge 2^{18}$, for comparing the results :: :: to the Poisson distribution with that mean. This test uses :: :: n=2^24 and m=2^9, so that the underlying distribution for j :: :: is taken to be Poisson with $lambda=2^{27}/(2^{26})=2$. A sample :: :: of 500 j's is taken, and a chi-square goodness of fit test :: :: provides a p value. The first test uses bits 1-24 (counting :: :: from the left) from integers in the specified file. :: Then the file is closed and reopened. Next, bits 2-25 are :: :: :: used to provide birthdays, then 3-26 and so on to bits 9-32. :: :: Each set of bits provides a p-value, and the nine p-values :: :: provide a sample for a KSTEST. :: : : : : : : :

A sample of Diehard output (cont.)

BIRTHDAY SP	ACINGS TEST, M	= 512 N=2**24 LAMBD	A= 2.0000	
Results for newrnd.bin				
	For a s	sample of size 500:	mean	
	newrnd.bin	using bits 1 to	24 2.000	
duplicate	number	number		
spacings	observed	expected		
0	65.	67.668		
1	137.	135.335		
2	138.	135.335		
3	93.	90.224		
4	41.	45.112		
5	15.	18.045		
6 to INF	11.	8.282		
Chisquare	with 6 d.o.f.	= 2.04 p-value	= 0.084410	

A sample of STS output

Statistical Test	P-value
Frequency	0.604458
Block Frequency $(m = 100)$	0.833026
Cusum-Forward	0.451231
Cusum-Reverse	0.550134
Runs	0.309757
Long Runs of Ones $(M = 10000)$	0.657812
Rank	0.577829
Spectral DFT	0.086702
NonOverlapping Templates $(m = 9, B = 00000001)$	0.496601
Overlapping Templates $(m = 9)$	0.339426
Universal ($L = 7, Q = 1280$)	0.411079
Approximate Entropy ($m = 5$)	0.731449
Random Excursions ($x = +1$)	0.00000
Random Excursions Variant ($x = -1$)	0.00000
Lempel Ziv Complexity	0.398475
Linear Complexity ($M = 500$)	0.309412
Serial ($m = 5, \nabla \Psi^2_m$)	0.742275

Possible improvements

- The current PRNG is not the fastest in the block
- Possible replacements with AES-based
- Retaining entropy over reloads

Links

- <u>http://razor.bindview.com/publish/papers/t</u>
 <u>cpseq.html</u>
- <u>http://lcamtuf.coredump.cx/newtcp/</u>
- <u>http://www.cs.berkeley.edu/~daw/rnd/mab-</u> <u>rand</u>
- <u>http://www.schneier.com/yarrow.html</u>

More links

- <u>http://csrc.ncsl.nist.gov/rng/</u>
- <u>http://stat.fsu.edu/pub/diehard/</u>

CISCO SYSTEMS