Cisco Systems

[^0]
PRNG in IOS

Gaus - PSIRT IM
gaus@cisco.com

Overview

- How it started
- What it looked like
- How it was improved
- How was tested
- Possible further improvements

What were looking at

- "Big Bang", who knows how it looked like?
- Starry night, Copyright NASA, STScl, HubbleSite
- "Strange Attractors and TCP/IP Sequence Number Analysis" by Michal Zalewski

Beginning

- It started by ISNs in TCP session
- They should be unpredictable but they were not

Improving ISNs

- One way is to make ISN as random as possible
- What exactly "random" means?
- Unpredictable and next-bit test
- The existing PRNG was not adequate for the purpose
- The solution is to introduce a new one

How PRNG works

- The universal recipe is the same:
$>$ Take some fresh entropy and put it into a pot
$>$ Add more entropy whenever you have a chance and stir it in
>Serve when needed but not forget to stir

Some mixing tools

More mixing tools

The challenge

- Where to find entropy
- IOS is closed system and it does not have:
- Hard disk
- Mouse
- Keyboard

Some unsuccessful ideas

- MAC or IP addresses
- Packet length, timing between packets
- Environmental temperature
- CPU fan rotation
- Wireless noise, microphone, camera
- "Something" from the memory

More promising ideas

- truerandom() function but IOS is not preemptive
- Timing between consecutive passes in a simple loop
- Time when the function is invoked
- "something" from the memory

How it looks today

- PRNG uses GF-based mixing function and it is extracted using MD5
- Entropy is slow to accumulate
- PRNG passes all statistical tests

How to test a sequence

- How random is your "random" sequence?
- Is "111111111111111111111" more random than "010101010101010101" or "10011010100101101"?
- We can only test for statistical properties of a sequence.

Tools used for testing

- Diehard
- NIST Statistical Test Suite
- Some others were tried but were not adequate

Diehard

- Not really user friendly
- Need some knowledge to interpret the results
- Very powerful
- Needs large input (~8*10^9 bits)

NIST STS

- Nicer interface
- Sometimes can be hard to select right parameters and input sequence length
- An par with Diehard

A sample of Diehard output

```
:: This is the BIRTHDAY SPACINGS TEST
:: Choose m birthdays in a year of n days. List the spacings ::
:: between the birthdays. If j is the number of values that ::
:: occur more than once in that list, then j is asymptotically ::
:: Poisson distributed with mean m^3/(4n). Experience shows n ::
:: must be quite large, say n>=2^18, for comparing the results ::
:: to the Poisson distribution with that mean. This test uses ::
:: n=2^24 and m=2^9, so that the underlying distribution for j ::
:: is taken to be Poisson with lambda=2^27/(2^26)=2. A sample ::
:: of 500 j's is taken, and a chi-square goodness of fit test ::
:: provides a p value. The first test uses bits 1-24 (counting ::
:: from the left) from integers in the specified file. ::
:: Then the file is closed and reopened. Next, bits 2-25 are ::
:: used to provide birthdays, then 3-26 and so on to bits 9-32. ::
:: Each set of bits provides a p-value, and the nine p-values ::
:: provide a sample for a KSTEST. ::
```

: :

A sample of Diehard output (cont.)

A sample of STS output

Statistical Test	P-value
Frequency	0.604458
Block Frequency ($m=100$)	0.833026
Cusum-Forward	0.451231
Cusum-Reverse	0.550134
Runs	0.309757
Long Runs of Ones ($M=10000$)	0.657812
Rank	0.577829
Spectral DFT	0.086702
NonOverlapping Templates $(m=9, B=000000001)$	0.496601
Overlapping Templates ($m=9$)	0.339426
Universal ($L=7, Q=1280$)	0.411079
Approximate Entropy ($m=5$)	0.731449
Random Excursions ($x=+1$)	0.000000
Random Excursions Variant ($x=-1$)	0.000000
Lempel Ziv Complexity	0.398475
Linear Complexity ($M=500$)	0.309412
Serial ($\left.m=5, \nabla \Psi^{2}{ }_{m}\right)$	0.742275

Possible improvements

- The current PRNG is not the fastest in the block
- Possible replacements with AES-based
- Retaining entropy over reloads

Links

- http://razor.bindview.com/publish/papers/t cpseq.html
- http:///lcamtuf.coredump.cx/newtcp/
- http://www.cs.berkeley.edu/~daw/rnd/mabrand
- http://www.schneier.com/yarrow.html

More links

- http://csrc.ncsl.nist.gov/rng/
- http://stat.fsu.edu/pub/diehard/

Cisco Systems rill|lıwill|lı。

[^0]:

 \qquad

