NoAH Honeynet Project

European Network of Affined Honeypots

17th TF-CSIERT Event
23/24 January 2006
DFN-CERT Services GmbH
Introduction

• NoAH is a Specific Support Action in the Sixth Framework Programme of the European Union.
• Start: April 2005
• End: 31 March 2008
• Homepage: http://www.fp6-noah.org/
 • 1st NoAH Workshop: May 2006
Introduction

• Project partners
 • Foundation for Research and Technology Hellas (FORTH) - Coordinator
 • Alcatel CIT
 • DFN-CERT Services GmbH
 • Eidgenössische Technische Hochschule Zürich (ETHZ)
 • Hellenic Telecommunication and Telematics Application Company S.A (FORTHnet)
 • Trans-European Research and Education Networking Association (TERENA)
 • Virtual Trip Limited
 • Vrije Universiteit Amsterdam (VU)
Introduction

• Main objectives
 ● Design a distributed state-of-the-art infrastructure of honeypots.
 ● Develop techniques for the automatic identification of attacks, and for the automatic generation of their signatures.
 ● Installation and operation of a pilot honeypot infrastructure.
 ● Distribution of open-source software, anonymised attack data and signatures to NRENs, ISPs, and CSIRTs.
Work Packages

Finished Work Packages:

- **WP0**: Requirements Analysis and State-of-the-Art
 - WP0.1: Review existing technology.
 - WP0.2: Identification of the requirements of the NoAH infrastructure.
- Deliverables D0.1 and D0.2 available on NoAH's webserver
Work Packages

Running Work Packages:

- WP 1: Design of System Architecture
 - Specification of NoAH's honeypot components, the infrastructure, and signature generation mechanism.

Comming Work Packages:

- WP2: Implementation
 - Implementation of the NoAH's honeypot components and infrastructure
- WP3: Demonstration and Pilot Operation
 - Operation of the pilot infrastructure in conjunction with a number of participating sites.
Preliminary Results

Architecture Requirements:
• Detection of zero-day attacks and worms
 • Avoiding false-positive results.
 • Detection has to be reliable.
 • Detection of worms in an early stage of spreading.
• Well-suited to capture data for automatic signature generation.
• Scalability
 • Efficient cooperation with NRNs, CSIRTs, and ISPs.
 • Easy and secure deployment of NoAH components.
Preliminary Results

Resulting Solution: Hybrid architecture composed of low- as well as high-interaction honeypots

- Motivation: Combination of advantages of both types of honeypots to fit all requirements.
 - High accuracy of attack detection (HI honeypot)
 - High potential to capture data (HI honeypot)
 - High scalability of architecture (LI honeypot)
Recapitulation: Architecture Requirements:

- Detection of zero-day attacks and worms (→ HI honeypot)
 - Avoiding false-positive results.
 - Detection has to be reliable.
 - Detection of worms in an early stage of spreading.
- Well-suited to capture data for automatic signature generation (→ HI honeypot).
- Scalability (→ LI honeypot)
 - Efficient cooperation with NRNs, CSIRTs, and ISPs.
 - Easy and secure deployment of NoAH components.
Preliminary Results

NoAH Architecture

Attacker

NoAH perimeter

low-interaction HPs

NoAH core

high-interaction HPs
Preliminary Results

- Low-interaction honeypots (e.g. honeyd)
 - Accept connections from attackers.
 - Proxy connections to high-interaction honeypots.
 - Performance to cover broad IP space to increase detection probability of zero-day attacks and worms.
 - Easy and secure deployment by participating sites (much better acceptance compared to high-interaction honeypots).
 - Potential for filtering out known attacks.
Preliminary Results

- High-interaction honeypots:
 - Providing different services (e.g. HTTP server)
 - Deployment of „Argos“ containment environment (Vrije Universiteit Amsterdam)
 - Detect attacks that inject data to modify execution control flow (EIP register) – e.g. almost all exploits for buffer overflow, format string, and double-free vulnerabilities.
 - Dynamically taint all network input (e.g. HTTP-Requests).
 - Prevent and detect if tainted data is used in an illegitimate way – e.g. used as function pointer or load into EIP register.
 - Attack is stopped before it can get in control of the honeypot.
 - Potential of tracking attack-related memory flows.
 - Cope with polymorphic shellcode.
 - Capture of exploit integrated shellcode.
 - Capture of attack related data.
Preliminary Results

Signature generation

• Based on data from high-interaction honeypots (e.g. Argos) and network traffic (host and network based).
• Detection of polymorphic attacks
• Introduction of Meta Signatures
 • Composed of multiple types of signatures.
 • Includes flag to indicate polymorphism.
 • Motivation: Combination of different types of signatures are better suited to detect polymorphic attacks.
Thank You