Forensic Discovery

Wietse Venema
wietse@porcupine.org
IBM T.J.Watson Research, USA

Overview

- Information on retired disks.
- Information on overwritten disks.
- Persistence of deleted file information.
- Persistence of information in main memory.
- Recovering Windows/XP files without key.
- Trends in computer system subversion.

Global hard disk market

(Millions of units, source: Dataquest)

Informal survey of retired disks (Garfinkel & Shelat)

- Experiment: buy used drives, mainly via Ebay.
- Time frame: November 2000 August 2002.
- 158 Drives purchased.
- 129 Drives still worked.
- 51 Drives "formatted", leaving most data intact.
- 12 Drives overwritten with fill pattern.
- 75GB of file content was found or recovered.

IEEE Privacy & Security January/February 2003, http://www.computer.org/security/garfinkel.pdf

What information can be found on a retired disk

- One drive with 2868 account numbers, access dates, balances, ATM software, but no DES key.
- One drive with 3722 credit card numbers.
- Corporate memoranda about personnel issues.
- Letter to doctor from cancer patient's parent.
- Email (17 drives with more than 100 messages).
- 675 MS Word documents.
- 566 MS Powerpoint presentations.
- 274 MS Excel spreadsheets.

File System Persistence

Deleted file data can be more persistent than existing file data

Digital media aren't

- Information is digital, storage is analog.
- Information on magnetic disks survives multiple overwrite operations (reportedly, recovery is still possible with 80GB disk drives!).
- Information in semiconductor memory survives "power off" (but you have little time).

Disk track images: http://www.veeco.com/

Peter Gutmann's papers: http://www.cryptoapps.com/~peter/usenix01.pdf

and http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html

Deleting a file destroys structure not content

Persistence of deleted file time attributes - dedicated UNIX server

Surviving deleted file time attributes per day

Persistence of deleted file <u>content</u> - same dedicated UNIX server

Summary: persistence of deleted file content

Machine	File system	Half-life
spike.porcupine.org ¹	entire disk	35 days
flying.fish.com ²	/	17 days
flying.fish.com ²	/usr	19 days
www.porcupine.org ¹	entire disk	12 days

¹FreeBSD ²Linux

Why deleted file data can be more persistent than existing file data

- Existing files are easy to access, and therefore easy to modify. Deleted files are less accessible.
- UFS and Ext*fs file systems are organized into zones of 32768 blocks with directories, files, etc.
 A deleted file in zone X survives writing activity in zone Y. Other file systems have comparable locality properties.
- Information from deleted files becomes a "fossil".
 It may be incomplete but it does not change until it is destroyed.

Main Memory Persistence

Recovering Windows/XP files without knowing the key

Information in main memory

- Running processes¹.
- Terminated processes¹.
- Kernel memory.
- Recently active files/directories (file cache).
- Deleted files (from process or from cache).
- All have different persistence properties.

¹Some information may be found in swap files.

Block cache versus virtual cache (owned by system, not by applications)

DOS, Win95/98/ME, BSD

BSD, Linux, Solaris, WinNT/2K/XP

File caching in main memory (low-traffic web pages, FreeBSD)

Trail of secrets across memory (after Chow et al.)

Short-term memory persistence after process termination (1MB stamp)

Long-term memory persistence

(Chow et al., USENIX Security 2005)

Recovering Windows/2K/XP encrypted files without key

- EFS¹ provides encryption by file or by directory.
 Encryption is enabled via an Explorer property dialog box or via the equivalent system calls.
- With encryption by directory, files are encrypted before they are written to disk.
- Is unencrypted content of EFS files cached in main memory?
- If yes, for how long?

¹EFS=Encrypting File System

Experiment: create encrypted file

- Create "encrypted" directory c:\temp\encrypted.
- Download 350kB text file via FTP, with content:

```
00001 this is the plain text
00002 this is the plain text
...
11935 this is the plain text
11936 this is the plain text
```

 Scanning the disk from outside (VMware rocks!) confirms that no plaintext is written to disk.

Experiment: search memory dump

- Log off from the Windows/XP console and press Ctrl/ScrollLock twice for memory dump¹.
- Analyze result with standard UNIX tools:

```
%strings memory.dmp | grep 'this is the plain text'
03824 this is the plain text
03825 this is the plain text
...etcetera...
```

99.6% of the plain text was found undamaged.

¹Microsoft KB 254649: Windows 2000 memory dump options.

Recovering Windows/XP encrypted files without key

- Good: EFS encryption provides privacy by encrypting file content before it is written to disk.
- Bad: unencrypted content stays cached in main memory even after the user has logged off.
- Similar experiments are needed for other (UNIX) encrypting file systems. Most are expected to have similar plaintext caching behavior.

Trends in Subversion

Hardware is getting softer as complexity increases

Progression of subversion (also known as rootkits)

Hardware is not what it used to be

- Nowadays, almost every electronic device has firmware that can be updated.
- Popularity ranking according to Google (8/2005):

+dvd +firmware	1.2M hits
+satellite +firmware	1.0M
+disk +firmware	930k
+phone +firmware	910k

Not all hits are "officially supported".

Reflashing for fun and profit

('lock-in' versus 'unlocking the true potential')

It's all about business models.

- Time to market: ship it now, fix it later.
- Watch satellite etc. TV without paying.
- Re-enable wireless telephone features.
- Disable DVD player region locks.
- Upgrade camera to more expensive model.

Note, these are all special-purpose devices.

What about general-purpose computer systems?

- Pentium CPU instruction set updates require digital signature, and don't survive 'power off'.
- Little variation in system BIOS implementations; some variation in processors or in operating systems as used in disks and other peripherals.
- Enough variation to make worm-like exploitation error-prone (lots of systems become door stops).
- Of course, this won't stop motivated individuals from updating the firmware in specific machines.

Conclusion

- Deleted file information can survive for a year or more, even with actively used file systems.
- Main memory becomes a primary source of forensic information, especially with infection of running processes or running operating system kernels.
- Hardware is becoming softer all the time, as complexity increases. Do not blindly trust that a hardware device will give you all the information that is stored on it.

Pointers

- Simson Garfinkel, Abhi Shelat: "Remembrance of Data Passed". IE³Privacy&Security, Jan 2003. http://www.computer.org/security/garfinkel.pdf
- Dan Farmer, Wietse Venema: "Forensic Discovery", Addison-Wesley, Dec. 2004. http://www.porcupine.org/forensics/ http://www.fish2.com/forensics/
- Jim Chow et al.: "Shredding Your Garbage", USENIX Security 2005; "Understanding Data Lifetime", USENIX Security 2004.