
SBOM to VEX - Discovering
What's in the Box and How
Badly it Can Hurt You

</ From the creators of the
fastest growing open source
kubernetes security platform

Ben Hirschberg

Co-founder & CTO @ARMO

Kubescape maintainer

Whitehat in the past (unofficially still ;-)

Fluent in Hebrew, Hungarian, C, ASM and Go

Contributor in CNCF + organizer of CNCF Jerusalem

Father of 4 <3

/whoami

@Ben Hirschberg

@slashben81

Ben-hirschberg

github.com/slashben

https://www.linkedin.com/in/benyamin-ben-hirschberg-66141890/Ad_flagship3_profile_view_base_contact_details%3BJo2ygBnHSNui0kybrBV1Uw%3D%3D
https://github.com/slashben

Kubernetes security

Scanning and monitoring

From dev to production

Misconfigurations and vulnerability finding

Operator and CLI

/man_kubescape

@Ben Hirschberg

@Kubescape

github.com/kubescape/kubescape

https://github.com/slashben

/man_armo

/usually…

/this time

/cat agenda

SBOMs and VEXs

Exploitability evaluation with eBPF

Automation of VEX generation with Kubescape

/sausage-as-a-service

● Modern software contains 80-90% open source

software

● At least 70% of the containerized workloads

are coming from external sources

● 90% of the first level dependencies have

devepncies themselves

/sbom

If the sausage is your software,

the SBOM is the list of the

ingredients

/sbom-use

● Licensing issues in an organization

(software composition analysis)

● Security posture/exposure (software

posture management)

● Strategic exposures in

organizational software

/sbom-generators

● Can only find what they

are looking for

● Near 100% true

positives

/vulnerabilities-and-sbom

Vulnerability
DB

SBOM

Vulnerability
scanner

linux dist
pckg

language
specific

linux
dist

NVD

PypP
ypi

linux
dist

ask for

input

ask for input

/vulnerabilities-and-sbom

/State of vulnerabilities

Comparing the whole sample to the sub-sample of graduated projects

Reviewing the
distribution of severities

Reviewing top
CVEs in both

Reachability

/Image repos with most scans in the general sample

Top count of repo # workload image scans

quay.io/argoproj/argocd 19,426

docker.io/bitnami/redis 13,308

quay.io/argoproj/argoexec 11,427

quay.io/prometheus-operator/prometheus-config-reloader 11,275

quay.io/kiwigrid/k8s-sidecar 6,581

quay.io/prometheus/prometheus 6,390

docker.io/bitnami/mongodb 6,312

quay.io/prometheus/node-exporter 5,569

gcr.io/datadoghq/agent 5,404

http://quay.io/argoproj/argocd
http://docker.io/bitnami/redis
http://quay.io/argoproj/argoexec
http://quay.io/prometheus-operator/prometheus-config-reloader
http://quay.io/kiwigrid/k8s-sidecar
http://quay.io/prometheus/prometheus
http://docker.io/bitnami/mongodb
http://quay.io/prometheus/node-exporter
http://gcr.io/datadoghq/agent

/Image tags with most scans in the graduated sample

Top count of repo # workload image scans

quay.io/argoproj/argocd 19,426

quay.io/argoproj/argoexec 11,427

quay.io/prometheus-operator/prometheus-config-reloader 11,275

quay.io/prometheus/prometheus 6,390

quay.io/prometheus/node-exporter 5,569

quay.io/prometheus/alertmanager 4,172

quay.io/prometheus-operator/prometheus-operator 4,088

registry.k8s.io/kube-proxy 3,530

registry.k8s.io/kube-state-metrics/kube-state-metrics 3,039

http://quay.io/argoproj/argocd
http://quay.io/argoproj/argoexec
http://quay.io/prometheus-operator/prometheus-config-reloader
http://quay.io/prometheus/prometheus
http://quay.io/prometheus/node-exporter
http://quay.io/prometheus/alertmanager
http://quay.io/prometheus-operator/prometheus-operator
http://registry.k8s.io/kube-state-metrics/kube-state-metrics
http://mcr.microsoft.com/oss/kubernetes/kube-proxy
http://registry.k8s.io/kube-state-metrics/kube-state-metrics

/Comparison_

NegligibleMedium High Low Critical Other

General sample Graduated sample

/TOP vulnerabilities in general population_

/CVE-2022-28391

CVSS vector: AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H

Description:
BusyBox through 1.35.0 allows remote attackers to execute arbitrary code if netstat
is used to print a DNS PTR record's value to a VT compatible terminal. Alternatively,
the attacker could choose to change the terminal's colors.

Cloud native environment:
If someone is running netstat in a Pod from a terminal while the attack controls the
DNS entry the terminal is prone to the attack. Not a common scenario.

/CVE-2021-33560

CVSS vector: AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N

Description:
Libgcrypt before 1.8.8 and 1.9.x before 1.9.3 mishandles ElGamal encryption because
it lacks exponent blinding to address a side-channel attack against mpi_powm, and
the window size is not chosen appropriately. This, for example, affects use of
ElGamal in OpenPGP.

Cloud native environment:
Libgcrypt is around in many images for GPG signature verification of APT/YUM
packages. It is mostly not in use during deployment + uo private key in the image

/CVE-2019-8457

CVSS vector: AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

Description:
SQLite3 from 3.6.0 to and including 3.27.2 is vulnerable to heap out-of-bound read
in the rtreenode() function when handling invalid rtree tables.

Cloud native environment:
If the attacker can inject arbitrary SQL statements then the attacker can get
arbitrary code execution. SQLite is part of Centos/RH base images.

/Opinion: these are the
vulnerabilities has some probability
to be exploited

*gut feeling :-/

/TOP vulnerabilities in graduated projects

/CVE-2015-5237

CVSS vector: AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

Description:
protobuf allows remote authenticated attackers to cause a heap-based buffer
overflow

Cloud native environment:
It is indeed a vulnerability in protobuf C/C++ package. But not in the Golang
package!

https://github.com/anchore/grype/issues/558

/Opinion: these are the
vulnerabilities has some probability
to be exploited

*gut feeling :-/

/Looking at general results_

HighCritical Medium Low Negligible Other

Average
vulnerability
count per severity

General sample Graduated sample

https://docs.google.com/file/d/1Kt8EV-d1dNqEZXgfassYlUpYF3Y0bEjX/preview

/rewind

/is_it?

Vulnerability
in image

Application
exploit

/rewind/Vulnerabilities in common images_

/Kubescape reachability

SBOM (full)

Files actually used
by the container

SBOM
(filtered)

Vulnerability
scanner

Scan image

eBPF

Compare against SBOM

Feed to Vulnerability
scanner

/Kubescape reachability

System
calls

KerneleBPFFiltered

Relevant
vulnerabilities

/Kubescape reachability results

relevant

/what-is-kubescape

● CNCF Project

● Kubernetes security side-kick

● Configuration & Vulnerability analysis

● Runtime detection

● 10k GitHub starts

● Widely adopted tool (both CLI and service)

/Looking only at filtered results_

HighCritical Medium Low Negligible Other

Average relevant
vulnerability
count per severity

/vex

If SBOM is like the ingredient

list of a sausage, then VEX is

like the list of allergens

/vex

/vex-promise

/vex-reality

● Preparing and

maintaining reliable

VEX is time consuming

● “Not good” if not

reliable

/vex-solution-1

/vex-support

/ks_installation

$ helm repo add kubescape https://kubescape.github.io/helm-charts/
$ helm repo update
$ helm upgrade --install kubescape kubescape/kubescape-operator -n kubescape
--create-namespace --set clusterName=`kubectl config current-context` --set
capabilities.vexGeneration=enable
$ kubectl -n kubescape get pods
NAME READY STATUS RESTARTS AGE
kubescape-6bd764869d-nmk5k 1/1 Running 0 99s
kubevuln-76bbbdfcd4-8fxcq 1/1 Running 0 99s
node-agent-dnf6l 1/1 Running 0 99s
operator-75c999bfc6-dlfj8 1/1 Running 0 99s
storage-5898d46fd-rmv4x 1/1 Running 0 99s

/generating VEX

$ kubectl apply -f https://k8s.io/examples/application/deployment.yaml

$ kubectl -n kubescape get openvulnerabilityexchangecontainer $(kubectl -n kubescape
get openvulnerabilityexchangecontainer -o jsonpath='{.items[0].metadata.name}') -o
jsonpath='{.spec}' > nginx.json

$ jq "." nginx.json | grep -c "\"affected\""
58
$ jq "." nginx.json | grep -c "\"not_affected\""
338

/using_with_grype

$ grype nginx:1.14.2 --vex nginx.json
 ✔ Vulnerability DB [no update available]
 ✔ Loaded image
nginx:1.14.2
 ✔ Parsed image
sha256:295c7be079025306c4f1d65997fcf7adb411c88f139ad1d34b537164aa060369
 ✔ Cataloged packages [111 packages]
 ✔ Scanned for vulnerabilities [58 vulnerability matches]
 ├── by severity: 55 critical, 102 high, 85 medium, 52 low, 102 negligible
 └── by status: 126 fixed, 270 not-fixed, 338 ignored

/takeaways

Vulnerabilities by scanners are mostly wrong

Good VEX can mitigate this

VEX can be enhanced automatically

/contribute_to_the_effort

As a user

As a developer

As a security expert

Thank you

www.armosec.io

