
1Public

Luci Stanescu

8 April 2025

Applying Cybersecurity Regulations
and Industry Standards
to Open Source Projects

Any fans of regulations?

2Public

There are great existing initiatives
looking to improve OSS security
posture (e.g. OpenSSF Best
Practices, Scorecard, LF report on
EU CRA)

Security regulations and standards
are based on general best practices

Two perspectives

3

Regulated enterprises need to
assess their software supply chain

Available standards are hard to fit
the complex OSS environments

Regulated environments using OSS

projects

OSS projects improving their security

posture

Public

What we’re evaluating

4

NCSC Vendor Security Assessment
CISA Vendor Supply Chain Risk Management Template

OpenSSF Best Practices
OpenSSF Scorecard

Public

5

Do regulatory tools apply to OSS?

NCSC VSA OpenSSF Best Practices

Version control V.A.3: Each product has a
version-controlled code repository

Passing: The project MUST
have a version-controlled
source repository that is
publicly readable and has a
URL.

Issue tracking &
remediation

V.J.1: The vendor has a process for
issuing remediation. (refers to
vulnerabilities)

Silver: The project MUST
have a documented process
for responding to
vulnerability reports.

Public

Regulatory tools

6Public

NCSC VSA

Created in support of TSA and ECR

“advice on how to assess the security of
network equipment”

10 categories, 58 criteria items

Specific / prescriptive: V.D.1 ”The vendor
makes use of modern heap protection
mitigations”

CISA Vendor SCRM Template

“a standardized template of questions
as a means to communicate ICT supply
chain risk posture in a consistent way“

8 categories, we only focus on one:
Secure Design and Engineering
(category 3)

More generic: 3.13 “Does your
organization configure the compilation
and build processes to improve
executable security?“

Open source tools

7Public

OpenSSF Best Practices

A program to promote security best
practices in FLOSS projects

143 criteria over three tiers (badge
levels)

Self-certification

OpenSSF Scorecard

20 automated checks that assess
projects

A stated goal is to enable informed
decisions about dependencies

Also based on security best practices

8Public

Regulated
environments using
OSS projects
Pain points

The problem

9

Can’t ask OSS projects to fill in NCSC VSA or CISA Vendor SCRM Template.

Inconsistently addressing supply chain risk is problematic.

Public

10

Step 1

Map regulatory standard
to OSS tools

The solution

Step 2

Gain blessing for the
mapping

Step 3

Record compliance data
for used projects

Public

Is a mapping possible?

11

32 / 58 NCSC VSA criteria items can be mapped to OpenSSF Best Practices
criteria (8 automatable to OpenSSF Scorecard tests)

13 / 16 CISA Vendor SCRM items can be mapped to OpenSSF Best Practices
criteria (4 automatable to OpenSSF Scorecard tests)

Public

12

Proposed mapping

NCSC VSA OpenSSF Best Practices OpenSSF
Scorecard

V.A.2: Software maintenance –
This maintenance, as a minimum,
covers security fixes for the
product.

Passing: There MUST be no unpatched
vulnerabilities of medium or higher
severity that have been publicly
known for more than 60 days.

Vulnerabilties

V.A.3: Each product has a
version-controlled code
repository

Passing: The project MUST have a
version-controlled source repository
that is publicly readable and has a
URL.

Implied

Public

13

Proposed mapping

NCSC VSA OpenSSF Best Practices OpenSSF
Scorecard

V.A.4: Software releases – Each
product goes through a rigorous
software release cycle including
internal testing [...].

Passing: The project MUST use at least
one automated test suite [...]

CI-Tests

V.A.7: Use of tools, software and
libraries – Third party tools (e.g.
code compilers) software
components and software
libraries [...] are inventoried.

Silver: The project MUST list external
dependencies in a
computer-processable way.

N/A

Public

14

Proposed mapping

NCSC VSA OpenSSF Best Practices OpenSSF
Scorecard

V.A.8: Software documentation –
The vendor provides up-to-date
and technically accurate
documentation alongside new
releases of the product.

The project MUST provide, in each
release, release notes that are a
human-readable summary of major
changes in that release [...].

N/A

V.B.1: Security culture – The
vendor has a security culture
which ensures that security
principles are followed. / V.B.2:
Secure Development Lifecycle

Silver: The project MUST implement
secure design principles (from
"know_secure_design"), where
applicable.

N/A

Public

15

Proposed mapping

NCSC VSA OpenSSF Best Practices OpenSSF Scorecard

V.B.3: Internal component
management – Any shared
internal components or libraries
are kept up to date and only the
latest stable, supported version is
used. / V.B.4: External component
management – Only supported
external components are used
within a product.

Silver: Projects MUST monitor or
periodically check their external
dependencies [...]. The project
MUST [...] make it easy to identify
and update reused
externally-maintained
components.

Dependency-Update
-Tool

Public

16

Proposed mapping

NCSC VSA OpenSSF Best Practices OpenSSF
Scorecard

V.C.3: Build environments and
automation – Build environments
are simple, and the build process
is automated.

Passing: [...] the project MUST provide
a working build system that can
automatically rebuild the software
from source code.

Vulnerabilties

V.C.4: Role-based access – Only
individuals with a need have
access to the internal code base.

Silver: The project MUST clearly define
and publicly document the key roles in
the project and their responsibilities
[...].

Branch-Protecti
on

Public

17

Proposed mapping

NCSC VSA OpenSSF Best Practices OpenSSF
Scorecard

V.C.5: Code review – All code is
independently reviewed prior to
acceptance.

Gold: (not quite) The project MUST
have at least 50% of all proposed
modifications reviewed before
release by a person other than the
author.

Branch-Protecti
on,
Code-Review

V.C.6: Repeatable builds – All
builds of released software can
be replicated at a future date.

Gold: The project MUST have a
reproducible build.

N/A

Public

18

Proposed mapping

NCSC VSA OpenSSF Best Practices OpenSSF
Scorecard

V.D.1: Heap protections / V.D.2:
Stack protections / V.D.3: Data
execution prevention / V.D.4:
ASLR / V.D.5: Memory mapping
protections

Gold: Hardening mechanisms MUST
be used in the software produced by
the project so that software defects
are less likely to result in security
vulnerabilities.

N/A

V.E.1: Software and firmware
signing – Vendor’s software and
firmware is digitally signed.

Silver: The project MUST
cryptographically sign releases of the
project results intended for
widespread use [...].

Signed-Release
s

Public

19

Proposed mapping

NCSC VSA OpenSSF Best Practices OpenSSF
Scorecard

V.E.3: Secure update – Updates
are delivered via a secure
channel.

Passing: The project MUST use a
delivery mechanism that counters
MITM attacks.

N/A

V.G.1: Automated testing – Once
developed, extensive security
tests are automatically run.

Passing: The project MUST use at least
one automated test suite [...]. It is
SUGGESTED that the test suite cover
most (or ideally all) the code branches,
input fields, and functionality.

N/A

Public

20

Proposed mapping

NCSC VSA OpenSSF Best Practices OpenSSF
Scorecard

V.G.5: Fuzzing Silver: (memory-unsafe languages) [...]
at least one dynamic tool (e.g., a
fuzzer or web application scanner)
MUST be routinely used.

Fuzzing

V.G.6: External testing Gold: The project MUST have
performed a security review within
the last 5 years.

N/A

V.G.7: Dynamic application
security testing

Passing: It is SUGGESTED that at least
one dynamic analysis tool be applied
[...].

N/A

Public

21

Proposed mapping

NCSC VSA OpenSSF Best Practices OpenSSF
Scorecard

V.H.2: Protocol Standardisation –
The product can be configured to
only use standardised protocols.

Passing: The software produced by
the project MUST use, by default, only
cryptographic protocols and
algorithms that are publicly published
and reviewed by experts [...] + others.

N/A

V.H.3: Management plane
security – By default, the product
is configured to only use
up-to-date, secure protocols on
the management plane. / V.H.5:
No unencrypted protocols

Gold: The software produced by the
project MUST support secure
protocols for all of its network
communications [...].

N/A

Public

22

Proposed mapping

NCSC VSA OpenSSF Best Practices OpenSSF
Scorecard

V.H.9: Good Practice Guidance –
The vendor is explicit about the
threats to the equipment that
they have sought to mitigate, and
those they have not.

Silver: The project MUST provide an
assurance case [...]. The assurance
case MUST include: a description of
the threat model [...].

N/A

V.J.1: The vendor has a process
for issuing remediation. (refers to
vulnerabilities)

Passing: The project MUST have a
documented process for responding
to vulnerability reports.

N/A

Public

23

Proposed mapping

NCSC VSA OpenSSF Best Practices OpenSSF
Scorecard

V.J.3: Vulnerability reporting –
publicly advertised route for
disclosure of security issues.

Passing: The project MUST publish the
process for reporting vulnerabilities
on the project site.

Security-Policy

Public

24Public

What can be further
learned
Exemplified using NCSC VSA

Security declaration (VSA criteria)

● V.A.1: Product lifecycle process – The vendor clearly identifies the lifecycle
for each product.

● V.A.5: Development processes and feature development – There is one
primary release train of the product.

● V.A.6: International release and forking – The vendor maintains a single,
global version line for each product. There are a minimal number of other
versions (ideally none).

● V.D.7: Security improvement and secure execution environments – The
vendor has plans to continue to improve its product’s security.

25Public

Python lifecycle

26Public

https://devguide.python.org/versions/

https://devguide.python.org/versions/

Security declaration (the why)

● Communicates expectations to end users

● Emphasises importance of security to contributors

● OpenSSF BP Passing:

○ The project MUST have at least one primary developer who knows
how to design secure software.

○ At least one of the project's primary developers MUST know of
common kinds of errors that lead to vulnerabilities in this kind of
software, as well as at least one method to counter or mitigate each
of them.

27Public

Code quality (VSA criteria)

● V.B.5: Unsafe Functions – There are no unsafe functions used within the
vendor’s released code.

● V.B.6: Redundant and duplicate code – The vendor’s source tree is
maintained to a level that there is limited redundant or duplicate code.

● V.B.7: File structure – The vendor’s source tree is maintained to a level
where code complexity is minimised, and functions perform single, clear
actions.

● V.B.9: Comments – The source tree has suitable and understandable
comments through it.

28Public

Code quality (the why)

● Code complexity seems to correlate with number of vulnerabilities [1]
● Code quality can encourage contributions
● Unsafe functions are considered unsafe for a reason

29Public

[1] I. Chowdhury and M. Zulkernine, “Can complexity, coupling, and cohesion metrics be used as early indicators of
vulnerabilities?”, Proceedings of the 2010 ACM Symposium on Applied Computing, 2010

What are unsafe functions

30Public

luci@dev-noble:~/sandbox$ cat dangerous.py
import sys
eval(sys.argv[1])
luci@dev-noble:~/sandbox$ bandit dangerous.py
[...]
Run started:2025-04-03 11:47:14.521892
Test results:
>> Issue: [B307:blacklist] Use of possibly insecure function - consider using safer
ast.literal_eval.
 Severity: Medium Confidence: High
 Location: dangerous.py:2
 More Info:
https://bandit.readthedocs.io/en/latest/blacklists/blacklist_calls.html#b307-eval
1 import sys
2 eval(sys.argv[1])
--

Restricted environment (VSA criteria)

● V.C.1: Segregation of development environment – Development
environment is segregated from corporate network and protected from
the internet.

● V.G.2: Testing rigour – Developers cannot modify the build environment to
hide or disregard build issues.

31Public

Restricted environment (the why and how)

● Least privilege principle is good practice
● Supply chain attacks are on the rise
● A project could be:

○ affected through its supply chain (e.g. GH actions)
○ targeted directly (as part of a supply chain attack)

● Either way, focus should be on protecting code integrity

32Public

Security best practices (VSA criteria)

● V.D.6: Least Privilege code – The vendor follows a ‘least privilege’
methodology when developing and executing code within their products.

● V.H.6: No undocumented administrative mechanisms – hard coded
passwords, access key pairs.

● V.H.7: No undocumented administrative features.
● V.H.8: No default credentials – No default passwords are left on the device

after the initial setup.
● V.H.1: Product hardening – The product can be easily hardened into a

secure configuration.

33Public

Security best practices (the why)

● Secure-by-default is important because, unfortunately, configurations are
rarely hardened.

● Secure-by-default also harmonizes configuration hardening.
● Important further hardening configuration steps should be emphasized in

documentation.

34Public

Testing (VSA criteria)

● V.G.3: Security Testing – Security functionality is tested to demonstrate
correct operation.

● V.G.4: Negative testing – Extensive negative testing is performed against
every product release, including a wide range of potential failure cases,
inappropriate message sequencing and malformed messages.

35Public

Testing (the why)

● Explicitly focusing on security controls/checks ensures these continue to
function as intended.

● Testing success paths and regressions is common, but leads to blind spots
(triggering error conditions is not that difficult and is what threat actors,
not normal users, will do).

36Public

Vulnerability response (VSA criteria)

● V.J.2: Issue comprehension – For issues, the vendor identifies the root
cause analysis.

● V.J.4: Issue transparency – The vendor is transparent about their patching
of security issues.

● V.J.5 Product Security Incident Response Team (PSIRT) – The vendor has set
up the PSIRT structures within its organisation.

37Public

Vulnerability response (the why)

● Vulnerabilities happen: being prepared ensures these get handled
coherently and without panic.

● Ignoring the root cause would just result in exploitability soon after.
● Open source promotes transparency – allows users to make informed,

risk-based decisions.

38Public

Does it sound familiar?

● 3.12. Does your organization reuse existing, well-secured software and
hardware components, when feasible, instead of duplicating functionality?

● 3.16. Does your organization maintain and manage a Product Security
Incident Reporting and Response program (PSIRT)?

● 3.17. Does your organization analyze vulnerabilities to identify root cause?

39Public

CISA Vendor SCRM Template Highlights

● 3.4. Does your organization document and communicate security control
requirements for your hardware, software, or solution offering?

● 3.11. Does your organization verify that third-party software provides
required security requirements/controls?

● 3.15. Does your organization configure offerings to implement secure
settings by default?

40Public

Takeaways

● Regulations can be adapted to open source projects.
● Use of open source in strongly-regulated environments can be encouraged

by the adoption of general-purpose security best practices.
● Open source projects can improve their security posture by looking at

government and industry cybersecurity standards.

41Public

Thank you! Questions?

42Public

