
Fitness for Purpose
Comparing and Contrasting the CVE List with OSV.dev

Andrew Pollock

I’m back!

● FYI I just finished up at Google
○ Thank you OpenSSF 🙏

● Expanding on last year’s presentation

My work in a nutshell

1. Take CVEs from the NVD
2. In conjunction with the CPE Dictionary

a. Try to figure out the Git repository for the
CPE(s) involved

b. Try and map the versions involved to Git
commits

c. Generate an OSV record
3. Profit!

a. Enable commit-level scanning for
source-code vulnerabilities (in C/C++ in
particular)

Read more at OSV.dev/blog:

● https://osv.dev/blog/posts/introducing-broa
d-c-c++-support/

● https://osv.dev/blog/posts/using-the-deter
mineversion-api/

http://osv.dev/blog
https://osv.dev/blog/posts/introducing-broad-c-c++-support/
https://osv.dev/blog/posts/introducing-broad-c-c++-support/
https://osv.dev/blog/posts/using-the-determineversion-api/
https://osv.dev/blog/posts/using-the-determineversion-api/

Last year’s call to action

● CNAs
○ Think about the CVEs you’re authoring and their fitness for purpose, in aggregate

● CVE Program
○ Make it easy for CNAs to do the right thing, and harder for them to do the wrong things

Fitness for purpose

● Why do we have vulnerability metadata?
○ Detection
○ Remediation

Compare and Contrast

OSV in a nutshell

● Precise identification of vulnerabilities in open
source software

○ To enable prioritized vulnerability remediation
● In all began in 2021 with OSS Fuzz

○ CVE 4.0 (and CPEs) couldn’t express findings
○ CVE ID allocation was manual and slow
○ Automated record creation and submission

was… scary
● OSV schema donated to the OpenSSF

○ github.com/ossf/osv-schema
● OSV.dev, OSV-Scanner and OSV-SCALIBR

are Google-sponsored infrastructure and
open source projects

○ github.com/google/osv.dev
○ github.com/google/osv-scanner
○ github.com/google/osv-scalibr

Languages

● C/C++
● CRAN (R)
● Crates.io (Rust)
● Go
● Hackage (Haskell)
● Hex (Erlang)
● Maven (Java)
● npm (JavaScript)
● NuGet (.NET)
● Packagist (PHP)
● Pub (Dart and

Flutter)
● PyPI (Python)

Distributions

● AlmaLinux
● Alpine
● Android
● Bitnami
● Chainguard/

Wolfi
● Debian
● Mageia
● openSUSE/

SUSE
● RHEL
● Rocky Linux
● Ubuntu

http://github.com/ossf/osv-schema
http://github.com/google/osv.dev
http://github.com/google/osv-scanner
http://github.com/google/osv-scalibr

Mission statements

Identify, define, and catalog publicly disclosed
cybersecurity vulnerabilities

Enable developers to reduce security risk arising
from known vulnerabilities in open source
components they use

● No specific purpose
● No specific target audience
● Broad scope

● Specific purpose
● Specific target audience
● Narrower scope

Scale: records

● 2024
○ 37,381
○ 307 distinct CNAs

● 2024
○ 82,968

■ 9,816 directly alias a CVE
■ 58,419 cross-reference with a CVE

○ 21 distinct home databases

Scale: record publishers

CNAs

● 447
○ 125 open source

Home databases

● 22

Let’s talk about scale

Problem: we’re drowning in vulnerabilities

● Hard for vendors
● Hard for defenders
● Hard for analysts

😥

Solution: send in the machines!

● Machine readable records enable
✅ Programmatic analysis
✅ Programmatic detection

CVE JSON 4.0

CVE JSON 5.0
OSV and OSV.dev

“CVE Record creation and publication could now be automated, meaning more
quality CVE Records could be produced at a faster pace.”

– CVE Program 25th Anniversary Report

CVE JSON 5.0

But…

● 15% (5,665) CVEs from 2024 have no
usable .affected field

● Plenty more with
○ invalid SemVer versions
○ other invalid version strings
○ other ambiguities

● Inconsistent usage of CVE 5.x
undermines this potential

{
 "vendor": "n/a",
 "product": "n/a",
 "versions": [
 {
 "version": "n/a",
 "status": "affected"
 }
]
}

Fitness for purpose

● Why do we have vulnerability metadata?
○ Detection (at scale)
○ Remediation (at scale)

Identify, define, and catalog publicly
disclosed cybersecurity vulnerabilities

Must haves
➢ Automation friendly
➢ Accurate

Federation without consistency is pointless

An ever growing number of unique snowflakes

● 70% or 307 (of 433) CNAs issued CVEs in 2024
○ Half of these issued 10 or less

● 70% or 307 (of 433) CNAs issued CVEs in 2024
○ Half of these issued 10 CVEs or less

Solutions?

● CISA Secure by Design Pledge
○ Voluntary

■ Up to a 1 year lag
○ Include CPE and CWE
○ 16% of CVEs (5,997) from 2024

● CNA Enrichment Recognition List (ERL)
● An attempt at upleveling quality

● Import-time validations
○ JSON Schema
○ Properties of a High Quality OSV Record

● Prevent backsliding in quality

Properties of a High Quality OSV Record

Properties of a High Quality OSV Record
Valid

● Passes JSON Schema validation

Precise

● version and commit ranges
○ Have an introduced version (and it exists)
○ Prefer a fixed version over last_affected (and it exists) and post-dates the introduced

version
○ Distinct

● Package ecosystem and purl (if present) is valid
● Package exists in ecosystem
● References work at publication time

Identifiable

● Links back to a CVE where applicable

But what about the CVEs?!

But what about the CVEs?!

CNA (Vendor)

● Individually
○ Emphasis on the human-readable parts

● External pressures
○ compliance obligations
○ vulnerability researchers
○ customers

● Misalignment of incentives
● Differing philosophies around

vulnerability management

Downstream consumer (customer)

● In aggregate
○ Emphasis on the machine-readable parts

● Need to be able to determine applicability
● Need to be able to prioritise
● May be another link in the chain

But what about the CVEs?!

● External pressures
○ compliance obligations
○ vulnerability researchers
○ customer contractual obligations and

evolved expectations

But what about the CVEs?!

● Differing philosophies around vulnerability
management

○ “Just upgrade!”

But what about the CVEs?!

Personas in the vulnerability lifecycle

Faith Cathy Veronica Lucky

Finder CNA

Vulnerability
Subject
Owner

Vulnerability
Impacted
User

CNA types

● Vendor (236)
● Open Source (85)
● Researcher (60)
● CERT (15)
● Hosted Service (14)
● Bug Bounty Provider (7)
● Consortium (1)

● Vendor (236)
● Open Source (85)
● Researcher (60)
● Bug Bounty Provider (7)

Contributed 29,870 (~80%) of the CVEs in 2024

Personas: Vendor CNAs

Cathy

CNA

Veronica

Vulnerability
Subject
Owner

Vendor
Organisation

Lucky

Vulnerability
Impacted
User

Customer/Consumer

Faith

Gimme
CVE ID

Finder

Faith

Finder

Am I
affected?
How do I

fix?

Minimal
effort and
grief from
everyone

Personas: Open Source CNAs

Cathy Veronica

CNA

Vulnerability
Subject
Owner

Open source
project

Lucky

Vulnerability
Impacted
User

Customer/Consumer

Faith Faith

Gimme
CVE ID

FinderFinder

Am I
affected?
How do I

fix?

Minimal
effort and
grief from
everyone

Personas: Open Source CNAs
4.1.12 The act of updating Product dependencies MUST NOT be determined to be a Vulnerability, regardless of whether the
dependencies have Vulnerabilities. For example, updating a library to address a Vulnerability in that library MUST NOT be determined
to be a new Vulnerability in a Product that uses the library, and a Vulnerability advisory for the Product SHOULD reference the CVE ID
for the Vulnerability in the library. See 4.2.13.

4.2.13 If multiple Products are affected by the same Independently Fixable Vulnerability, then the CNA:

1. MUST NOT assign more than one CVE ID if the Products are vulnerable because they share the vulnerable code. The assigned
CVE ID will be shared by the vulnerable Products.

2. SHOULD assign different CVE IDs if the Products do not share vulnerable code.
3. SHOULD assign different CVE IDs if the CNA is uncertain whether the Products share vulnerable code.

4.2.14 If a Product is affected by a Vulnerability because it uses the functionality or specification of another Product, then a CNA:

1. MUST assign a CVE ID to each known vulnerable implementation if there is a secure way of using the functionality or
specification.

2. MUST assign a single CVE ID if there is no option to use the functionality or specification in a secure way.
3. SHOULD assign different CVE IDs to each known vulnerable implementation if the CNA is uncertain whether there is a secure

way.

4.2.15 CNAs MUST NOT assign a different CVE ID to a Vulnerability that is fully interdependent with another Vulnerability. The
Vulnerabilities are effectively the same single Vulnerability and MUST use one CVE ID.

Personas: Bug Bounty Provider CNAs

Cathy

CNA

Veronica

Vulnerability
Subject
Owner

Bug Bounty
Provider

Lucky

Vulnerability
Impacted
User

Customer/Consumer

Faith

Vendor/Open
source project

Gimme
CVE ID
and $$$

Finder

Am I
affected?
How do I

fix?

What just
happened?

Personas: Researcher CNAs

Cathy

CNA

Veronica

Vulnerability
Subject
Owner

Researcher
Lucky

Vulnerability
Impacted
User

Customer/Consumer

Faith

Finder

Vendor/Open
source project

Am I
affected?
How do I

fix?

What just
happened?

Fame!
PR!

“unless covered by the
scope of another
CNA”

Possible steps forward

● Mission statement
○ Formalise the interpretation for the next 25 years

● Incrementally raise the minimum standard
○ In the JSON Schema
○ Start new CNAs at the desired standard
○ Bring existing CNAs up to this standard

● Work with the top 15 CNAs to model the desired behaviour
○ Covers ~75% of CVEs from 2024
○ Especially the CNA-LRs

Incrementally raise the minimum standard

Use cases

1. Automatable Detection
■ Affected product information
■ CPEs
■ Purls

2. Remediation Prioritisation
■ CVSS

3. Secondary Prioritisation and Retrospective Analysis
■ CWE

Strong leadership necessary

● CISA
○ As the funding body

● CVE Board
○ As the program governing body

● CNAs and CNA-LRs
○ Require enough information from vulnerability researchers and requesters

● Downstream consumers
○ Demand better from your vendor CNAs

● Vulnerability researchers
○ Demand better from your CVE issuers
○ Help them to do better

Let’s see how quickly we can do this

