
1

You have the data, now

what?

Uses for CVE root
cause mapping

Jeremy West

Sr Manager, PSIRT

O
ptional section m

arker or title

Alexander Bushkin

Sr Engineer, PSIRT

What we’ll
discuss today

▸ What problem are we solving?

▸ Methodologies and challenges

▸ Benefits of CWE usage and prioritization

▸ What is everyone else doing?

Agenda

2 Source:
Insert source data here
Insert source data here
Insert source data here

B
usiness C

hallenges

3

Software Vendor

● Vulnerability counts increase and you feel you’re always fixing CVEs
● How do I prioritize with an overload of SAST/DAST results, threat models, and

more
● Why are we collecting data for the sake of collecting data
● We understand root cause … now what?

Software Users

● Is the software secure?
● Constant vuln remediation is costly

Goal: Use data driven analysis to prevent vulnerabilities

4

Lost in the land of weaknesses
Beyond the world of CWE

Weakness: a condition in a software, firmware, hardware, or service component that, under certain
circumstances, could contribute to the introduction of vulnerabilities (mitre)

Weakness Origins

● Threat models (bad design)
● SAST/DAST results (bad code)
● Additional Threat intelligence research (ie.

external risks)
● CVE root cause mapping (something

happened … why)

5

Solution:
Finding commonality in the data

Commonality

6

What are the options for aligning and prioritizing

Threat Intelligence

Could happen It did happen

Threat Model

● Insecure Patterns in
designing software
which map to known
errors. Concerned
with patterns in
weaknesses and not
individual weaknesses
themselves

● Focus on CWE family
● AI threats

SAST/DAST

● Patterns in coding
which map to known
weaknesses (usually a
CWE ID)

● Caught at devel/build
time

CVE - RCM

● Why did the
vulnerability occur?

● Impact and scoring
● CWE Identifier
● KEV relationship

● Community health
● Environmental risks

Standardizing with CWE helps with prioritization

7

Step 1:

In order to prioritize multiple sets of data, you need to blend that data together somehow. Is <weakness> the
same thing as <weakness>. CWE was built for this purpose and is literally a topology for common weakness
enumeration.

Recommendation: Classify all weaknesses using CWE IDs (the taxonomy is alive and well!)

Step 2:

You now have lots of CWE data to filter through. How do you do this effectively without creating noise?

Recommendation: <refer to the next slide!>

8

Option 1: Presenting high level categorization

1. Narrow to a subset of components where high numbers of vulnerabilities were found.
2. Utilize CVE RC mapping data and focus on CWE categories

1. webkitgtk:
a. CWE-664: Improper Control of a Resource Through its

Lifetime
b. CWE-1218: Memory Buffer Errors

2. ghostscript:
a. CWE-707: Improper Neutralization
b. CWE-664: Improper Control of a Resource Through its

Lifetime

3. thunderbird:
a. CWE-664: Improper Control of a Resource Through its

Lifetime
b. CWE-355: User Interface Security Issues

 4. firefox
a. CWE-664: Improper Control of a Resource Through its

Lifetime
b. CWE-355: User Interface Security Issues

 5. gstreamer1-plugins-good
a. CWE-1218: Memory Buffer Errors
b. CWE-465: Pointer Issues
c. CWE-189: Numeric Issues

Intent: Help software developers improve the security posture of code by prioritizing top level
weakness themes which contribute to high vulnerability count

9

Option 2: Presenting low level weaknesses

1. Narrow to a subset of components where high numbers of vulnerabilities were found.
2. Utilize CVE RC mapping data and focus on repeat low level CWE IDs

1. webkitgtk:
a. CWE-119: Improper Restriction of Operations within the

Bounds of a Memory Buffer
b. CWE-125: Out-of-bounds Read
c. CWE-200: Exposure of Sensitive Information to an

Unauthorized Actor
2. ghostscript:

a. CWE-20: Improper Input Validation
b. CWE-23: Relative Path Traversal Weakness ID: 23
c. CWE-121: Stack-based Buffer Overflow

3. thunderbird:
a. CWE-120: Buffer Copy without Checking Size of Input

('Classic Buffer Overflow')
b. CWE-356: Product UI does not Warn User of Unsafe

Actions
c. CWE-451: User Interface (UI) Misrepresentation of

Critical Information

 4. firefox
a. CWE-120: Buffer Copy without Checking Size of Input

('Classic Buffer Overflow')
b. CWE-356: Product UI does not Warn User of Unsafe

Actions
c. CWE-451: User Interface (UI) Misrepresentation of

Critical Information
 5. gstreamer1-plugins-good

a. CWE-125: Out-of-bounds Read
b. CWE-476: NULL Pointer Dereference
c. CWE-191: Integer Underflow (Wrap or Wraparound)

Intent: Help software developers improve the security posture of code by prioritizing top level
weakness themes which contribute to high vulnerability count

10

Using CWE data for focused change
CWE as a Connecting Thread

Flexibility

CWE creates a flexible yet precise mapping for security concepts from high-level to low-level
- Ex. Memory Buffer Errors → Out-of-Bounds Reads

Can generalize or specify based on the audience or the framework you are utilizing
- Ex. Threat Modeling requires higher-level concepts
- Ex. SAST/DAST output prioritization benefits from lower-level, specific weaknesses

Standardized & Common Language

CWE creates a shared vocabulary that can be used interchangeably by different stakeholders (ex. developers,
researchers, management) to discuss a security concept, concern, etc.

Provides standardization in an industry which is famous for its fragmentation and tendency towards “every
vendor has their own terminology”

11

Additional Solutions
Make CWE data actionable

Additional Recommendations

● Tailor the results based on the audience. Use higher-level CWEs to communicate security
risks to higher-level audiences (leadership) and more technical, lower-level CWEs to
communicate security risks to lower-level audiences (engineering)

● Remember upstream contributors. Communicate results to upstream contributors; help
guide the security focus in OSS communities by tying them back to real-world (tangible)
issues

● Integrate CWE metrics into development pipelines; use it as a cross-check with SAST/DAST
output to prioritize the weaknesses to focus on. (We have another presentation specifically on
this topic!)

● Weakness resolution is not limited to just a patch in code; includes guardrails, security
practices, controls, hardening, etc

12

Audience Question

How are you leveraging CWE data?

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

13

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning support,

training, and consulting services make Red Hat a trusted

adviser to the Fortune 500.

Thank you

O
ptional section m

arker or title

