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What we’ll 
discuss today

▸ What problem are we solving?

▸ Methodologies and challenges

▸ Benefits of CWE usage and prioritization 

▸ What is everyone else doing?

Agenda

2 Source:
Insert source data here
Insert source data here
Insert source data here
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Software Vendor

● Vulnerability counts increase and you feel you’re always fixing CVEs
● How do I prioritize with an overload of SAST/DAST results, threat models, and 

more
● Why are we collecting data for the sake of collecting data
● We understand root cause … now what?

Software Users

● Is the software secure?  
● Constant vuln remediation is costly

Goal: Use data driven analysis to prevent vulnerabilities
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Lost in the land of weaknesses 
Beyond the world of CWE

Weakness: a condition in a software, firmware, hardware, or service component that, under certain 
circumstances, could contribute to the introduction of vulnerabilities (mitre)

Weakness Origins

● Threat models (bad design)
● SAST/DAST results (bad code)
● Additional Threat intelligence research (ie. 

external risks)
● CVE root cause mapping (something 

happened … why)
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Solution:
Finding commonality in the data 



Commonality
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What are the options for aligning and prioritizing

Threat Intelligence

Could happen It did happen

Threat Model

● Insecure Patterns in 
designing software 
which map to known 
errors. Concerned 
with patterns in 
weaknesses and not 
individual weaknesses 
themselves

● Focus on CWE family
● AI threats

SAST/DAST

● Patterns in coding 
which map to known 
weaknesses (usually a 
CWE ID)

● Caught at devel/build 
time

CVE - RCM

● Why did the 
vulnerability occur?

● Impact and scoring
● CWE Identifier
● KEV relationship

● Community health
● Environmental risks



Standardizing with CWE helps with prioritization
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Step 1:

In order to prioritize multiple sets of data, you need to blend that data together somehow. Is <weakness> the 
same thing as <weakness>.  CWE was built for this purpose and is literally a topology for common weakness 
enumeration.

Recommendation: Classify all weaknesses using CWE IDs (the taxonomy is alive and well!)

Step 2:

You now have lots of CWE data to filter through.  How do you do this effectively without creating noise?

Recommendation: <refer to the next slide!> 
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Option 1: Presenting high level categorization

1. Narrow to a subset of components where high numbers of vulnerabilities were found.
2. Utilize CVE RC mapping data and focus on CWE categories

1. webkitgtk:
a. CWE-664: Improper Control of a Resource Through its 

Lifetime
b. CWE-1218: Memory Buffer Errors

2. ghostscript:
a. CWE-707: Improper Neutralization
b. CWE-664: Improper Control of a Resource Through its 

Lifetime 

3. thunderbird: 
a. CWE-664: Improper Control of a Resource Through its 

Lifetime 
b. CWE-355: User Interface Security Issues

      4. firefox
a. CWE-664: Improper Control of a Resource Through its 

Lifetime 
b. CWE-355: User Interface Security Issues

      5. gstreamer1-plugins-good
a. CWE-1218: Memory Buffer Errors
b. CWE-465: Pointer Issues
c. CWE-189: Numeric Issues

Intent: Help software developers improve the security posture of code by prioritizing top level 
weakness themes which contribute to high vulnerability count



9

Option 2: Presenting low level weaknesses 

1. Narrow to a subset of components where high numbers of vulnerabilities were found.
2. Utilize CVE RC mapping data and focus on repeat low level CWE IDs

1. webkitgtk:
a. CWE-119: Improper Restriction of Operations within the 

Bounds of a Memory Buffer
b. CWE-125: Out-of-bounds Read
c. CWE-200: Exposure of Sensitive Information to an 

Unauthorized Actor
2. ghostscript:

a. CWE-20: Improper Input Validation
b. CWE-23: Relative Path Traversal Weakness ID: 23 
c. CWE-121: Stack-based Buffer Overflow

3. thunderbird: 
a. CWE-120: Buffer Copy without Checking Size of Input 

('Classic Buffer Overflow')
b. CWE-356: Product UI does not Warn User of Unsafe 

Actions
c. CWE-451: User Interface (UI) Misrepresentation of 

Critical Information

      4. firefox
a. CWE-120: Buffer Copy without Checking Size of Input 

('Classic Buffer Overflow')
b. CWE-356: Product UI does not Warn User of Unsafe 

Actions
c. CWE-451: User Interface (UI) Misrepresentation of 

Critical Information
      5. gstreamer1-plugins-good

a. CWE-125: Out-of-bounds Read
b. CWE-476: NULL Pointer Dereference
c. CWE-191: Integer Underflow (Wrap or Wraparound)

Intent: Help software developers improve the security posture of code by prioritizing top level 
weakness themes which contribute to high vulnerability count
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Using CWE data for focused change
CWE as a Connecting Thread 

Flexibility

CWE creates a flexible yet precise mapping for security concepts from high-level to low-level
- Ex. Memory Buffer Errors  →  Out-of-Bounds Reads 

Can generalize or specify based on the audience or the framework you are utilizing
- Ex. Threat Modeling requires higher-level concepts
- Ex. SAST/DAST output prioritization benefits from lower-level, specific weaknesses

Standardized & Common Language

CWE creates a shared vocabulary that can be used interchangeably by different stakeholders (ex. developers, 
researchers, management) to discuss a security concept, concern, etc.

Provides standardization in an industry which is famous for its fragmentation and tendency towards “every 
vendor has their own terminology”
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Additional Solutions
Make CWE data actionable 

Additional Recommendations

● Tailor the results based on the audience.  Use higher-level CWEs to communicate security 
risks to higher-level audiences (leadership) and more technical, lower-level CWEs to 
communicate security risks to lower-level audiences (engineering)  

● Remember upstream contributors.  Communicate results to upstream contributors; help 
guide the security focus in OSS communities by tying them back to real-world (tangible) 
issues

● Integrate CWE metrics into development pipelines; use it as a cross-check with SAST/DAST 
output to prioritize the weaknesses to focus on. (We have another presentation specifically on 
this topic!)

● Weakness resolution is not limited to just a patch in code; includes guardrails, security 
practices, controls, hardening, etc
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Audience Question

How are you leveraging CWE data?



linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat
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Red Hat is the world’s leading provider of enterprise 

open source software solutions. Award-winning support, 

training, and consulting services make Red Hat a trusted 

adviser to the Fortune 500. 

Thank you
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