
AIL Framework for Analysis of Information Leaks
Practical and Efficient Data-Mining of Suspicious Websites, Forums and Tor

Hidden-Services

Alexandre Dulaunoy
alexandre.dulaunoy@circl.lu

Aurelien Thirion
aurelien.thirion@circl.lu

Jean-Louis Huynen
jean-louis.huynen@circl.lu

info@circl.lu

April 1, 2021



Links

• AIL project https://github.com/ail-project

• AIL framework
https://github.com/ail-project/ail-framework

• Training materials
https://github.com/ail-project/ail-training

• Online chat https://gitter.im/ail-project/community

2 of 88

https://github.com/ail-project
https://github.com/ail-project/ail-framework
https://github.com/ail-project/ail-training
https://gitter.im/ail-project/community


Privacy, AIL and GDPR (PII)

• Many modules in AIL can process personal data and even special
categories of data as defined in GDPR (Art. 9).

• The data controller is often the operator of the AIL framework
(limited to the organisation) and has to define legal grounds for
processing personal data.

• To help users of AIL framework, a document is available which
describe points of AIL in regards to the regulation1.

1https:

//www.circl.lu/assets/files/information-leaks-analysis-and-gdpr.pdf
3 of 88

https://www.circl.lu/assets/files/information-leaks-analysis-and-gdpr.pdf
https://www.circl.lu/assets/files/information-leaks-analysis-and-gdpr.pdf


Potential legal grounds

• Consent of the data subject is in many cases not feasible in
practice and often impossible or illogical to obtain (Art. 6(1)(a)).

• Legal obligation (Art. 6(1)(c)) - This legal ground applies mostly
to CSIRTs, in accordance with the powers and responsibilities set
out in CSIRTs mandate and with their constituency, as they may
have the legal obligation to collect, analyse and share information
leaks without having a prior consent of the data subject.

• Art. 6(1)(f) - Legitimate interest - Recital 49 explicitly refers to
CSIRTs’ right to process personal data provided that they have a
legitimate interest but not colliding with fundamental rights and
freedoms of data subject.

4 of 88



Objectives

5 of 88



Our objectives

• Show how to use and extend an open source tool to monitor web
pages, pastes, forums and hidden services

• Explain challenges and the design of the AIL open source
framework

• Learn how to create new modules

• Learn how to use, install and start AIL

• Supporting investigation using the AIL framework

6 of 88



AIL Framework

7 of 88



From a requirement to a solution: AIL Framework

History:

• AIL initially started as an internship project (2014) to
evaluate the feasibility to automate the analysis of
(un)structured information to find leaks.

• In 2019, AIL framework is an open source software in
Python. The software is actively used (and maintained) by
CIRCL and many organisations.

• In 2020, AIL framework is now a complete project called ail
project2.

2https://github.com/ail-project/
8 of 88

https://github.com/ail-project/


AIL Framework: A framework for Analysis of
Information Leaks

”AIL is a modular framework to analyse potential information
leaks from unstructured data sources.”

Other leaks

9 of 88



Capabilities Overview

10 of 88



Common usage

• Check if mail/password/other sensitive information (terms
tracked) leaked

• Detect reconnaissance of your infrastructure

• Search for leaks inside an archive

• Monitor and crawl websites

11 of 88



Support CERT and Law Enforcement activities

• Proactive investigation: leaks detection
◦ List of emails and passwords
◦ Leaked database
◦ AWS Keys
◦ Credit-cards
◦ PGP private keys
◦ Certificate private keys

• Feed Passive DNS or any passive collection system

• CVE and PoC of vulnerabilities most used by attackers

12 of 88



Support CERT and Law Enforcement activities

• Website monitoring
◦ monitor booters
◦ Detect encoded exploits (WebShell, malware encoded in Base64, ...)
◦ SQL injections

• Automatic and manual submission to threat sharing and incident
response platforms
◦ MISP
◦ TheHive

• Term/Regex/YARA monitoring for local companies/government

13 of 88



Sources of leaks

14 of 88



Mistakes from users:

15 of 88



Sources of leaks: Paste monitoring

• Example: https://gist.github.com/

◦ Easily storing and sharing text online
◦ Used by programmers and legitimate users
→ Source code & information about configurations

• Abused by attackers to store:
◦ List of vulnerable/compromised sites
◦ Software vulnerabilities (e.g. exploits)
◦ Database dumps
→ User data
→ Credentials
→ Credit card details

◦ More and more ...

16 of 88

https://gist.github.com/


Sources of leaks: Paste monitoring

• Example: https://gist.github.com/

◦ Easily storing and sharing text online
◦ Used by programmers and legitimate users
→ Source code & information about configurations

• Abused by attackers to store:
◦ List of vulnerable/compromised sites
◦ Software vulnerabilities (e.g. exploits)
◦ Database dumps
→ User data
→ Credentials
→ Credit card details

◦ More and more ...

16 of 88

https://gist.github.com/


Examples of pastes (items)



Why so many leaks?

• Economical interests (e.g. Adversaries promoting services)

• Ransom model (e.g. To publicly pressure the victims)

• Political motives (e.g. Adversaries showing off)

• Collaboration (e.g. Criminals need to collaborate)

• Operational infrastructure (e.g. malware exfiltrating information on
a pastie website)

• Mistakes and errors

18 of 88



Are leaks frequent?

Yes!
and we have to deal with this as a CSIRT.

• Contacting companies or organisations who did specific
accidental leaks

• Discussing with media about specific case of leaks and how to
make it more practical/factual for everyone

• Evaluating the economical market for cyber criminals (e.g. DDoS
booters3 or reselling personal information - reality versus media
coverage)

• Analysing collateral effects of malware, software vulnerabilities or
exfiltration

→ And it’s important to detect them automatically.
3https://github.com/D4-project/19 of 88

https://github.com/D4-project/


Paste monitoring at CIRCL: Statistics

• Monitored paste sites: 27
◦ gist.github.com
◦ ideone.com
◦ ...

2016 2017 08.2018
Collected pastes 18,565,124 19,145,300 11,591,987
Incidents 244 266 208

Table: Pastes collected and incident4 raised by CIRCL

4http://www.circl.lu/pub/tr-46
20 of 88

http://www.circl.lu/pub/tr-46


Current capabilities

21 of 88



AIL Framework: Current capabilities

• Extending AIL to add a new analysis module can be done in 50
lines of Python

• The framework supports multi-processors/cores by default.
Any analysis module can be started multiple times to support
faster processing during peak times or bulk import

• Multiple concurrent data input

• Tor Crawler (handle cookies authentication)

22 of 88



AIL Framework: Current features

• Extracting credit cards numbers, credentials, phone numbers,
...

• Extracting and validating potential hostnames

• Keeps track of duplicates

• Submission to threat sharing and incident response platform
(MISP and TheHive)

• Full-text indexer to index unstructured information

• Tagging for classification and searches

• Terms, sets, regex and YARA tracking and occurences

• Archives, files and raw submission from the UI

• PGP, Cryptocurrency, Decoded (Base64, ...) and username
Correlation

• And many more
23 of 88



Terms Tracker

• Search and monitor specific keywords/patterns
◦ Automatic Tagging
◦ Email Notifications

• Track Term
◦ ddos

• Track Set
◦ booter,ddos,stresser;2

• Track Regex
◦ circl\.lu

• YARA rules
◦ https://github.com/ail-project/ail-yara-rules

24 of 88



Terms Tracker:

25 of 88



YARA Tracker:

26 of 88



Terms Tracker - Practical part

• Create and test your own tracker

27 of 88



Recon and intelligence gathering tools

• Attacker also share informations

• Recon tools detected: 94
◦ sqlmap
◦ dnscan
◦ whois
◦ msfconsole (metasploit)
◦ dnmap
◦ nmap
◦ ...

28 of 88



Recon and intelligence gathering tools

29 of 88



Decoder

• Search for encoded strings
◦ Base64
◦ Hexadecimal
◦ Binary

• Guess Mime-type

• Correlate paste with decoded items

30 of 88



Decoder:

31 of 88



Crawler

• Crawlers are used to navigate on regular website as well as .onion
addresses (via automatic extraction of urls or manual submission)

• Splash (”scriptable” browser) is rending the pages (including
javascript) and produce screenshots (HAR archive too)

Docker container

Splash

...
Docker container

Splash

AIL-framework

32 of 88



Crawler

How a domain is crawled by default

1. Fetch the first url
2. Render javascript (webkit browser)
3. Extract all urls
4. Filter url: keep all url of this domain
5. crawl next url (max depth = 1)

33 of 88



Crawler: Cookiejar

Use your cookies to login and bypass captcha

34 of 88



Crawler: Cookiejar

35 of 88



Crawler: DDoS Booter

36 of 88



Correlations and relationship

37 of 88



Live demo!

38 of 88



Example: Dashboard

39 of 88



Example: Text search

40 of 88



Example: Items Metadata (1)

41 of 88



Example: Items Metadata (2)

42 of 88



Example: Items Metadata (3)

43 of 88



Example: Browsing content

44 of 88



Example: Browsing content

45 of 88



Example: Search by tags

46 of 88



MISP

47 of 88



MISP Taxonomies

• Tagging is a simple way to attach a classification to an event or
anattribute.

• Classification must be globally used to be efficient.

• Provide a set of already defined classifications modeling estimative
language

• Taxonomies are implemented in a simple JSON format 5.

• Can be easily cherry-picked or extended

5https://github.com/MISP/misp-taxonomies
48 of 88

https://github.com/MISP/misp-taxonomies


Taxonomies useful in AIL

• infoleak: Information classified as being potential leak.

• estimative-language: Describe quality and credibility of
underlying sources, data, and methodologies.

• admiralty-scale: Rank the reliability of a source and the credibility
of an information

• fpf6: Evaluate the degree of identifiability of personal data and the
types of pseudonymous data, de-identified data and anonymous
data.

6Future of Privacy Forum
49 of 88



Taxonomies useful in AIL

• tor: Describe Tor network infrastructure.

• dark-web: Criminal motivation on the dark web.

• copine-scale7: Categorise the severity of images of child sex abuse.

7Combating Paedophile Information Networks in Europe
50 of 88



threat sharing and incident response platforms

−→

Goal: submission to threat sharing and incident response platforms.

51 of 88



threat sharing and incident response platforms

−→

1. Use infoleak taxonomy8

2. Add your own tags

3. Export AIL objects to MISP core format

4. Download it or Create a MISP Event9

8https://www.misp-project.org/taxonomies.html
9https://www.misp-standard.org/rfc/misp-standard-core.txt

52 of 88

https://www.misp-project.org/taxonomies.html
https://www.misp-standard.org/rfc/misp-standard-core.txt


MISP Export

53 of 88



MISP Export

54 of 88



MISP Export

55 of 88



Automatic submission on tags

56 of 88



API

57 of 88



AIL exposes a ReST API which can be used to interact with the
back-end10.

1 curl https ://127.0.0.1:7000/ api/v1/get/item/default

2 --header "Authorization:

iHc1_ChZxj1aXmiFiF1mkxxQkzawwriEaZpPqyTQj "

3 -H "Content -Type: application/json"

4 --data @input.json -X POST

5

• AIL API is currently covering 60% of the functionality of back-end.

10https:

//github.com/ail-project/ail-framework/blob/master/doc/README.md
58 of 88

https://github.com/ail-project/ail-framework/blob/master/doc/README.md
https://github.com/ail-project/ail-framework/blob/master/doc/README.md


Setting up the framework

59 of 88



Setting up AIL-Framework from source or virtual
machine

Setting up AIL-Framework from source

1 git clone

https://github.com/ail-project/ail-framework.git

2 cd AIL-framework

3 ./installing_deps.sh

60 of 88



Feeding the framework

61 of 88



Feeding AIL

There are different way to feed AIL with data:

1. Setup pystemon and use the custom feeder
◦ pystemon will collect items for you

2. Use the new JSON Feeder (twitter)

3. Feed your own data using the API or the import dir.py script

4. Feed your own file/text using the UI (Submit section)

62 of 88



Via the UI (1)

63 of 88



Via the UI (2)

64 of 88



Feeding AIL with your own data - API

api/v1/import/item

1 {

2 "type": "text",

3 "tags": [

4 "infoleak:analyst-detection=\"private-key\""

5 ],

6 "text": "text to import"

7 }

65 of 88



Feeding AIL with Twitter posts and associated urls

• AIL - feeder from Twitter11

• The AIL-feeder-twitter search in Twitter using Twint (without
API), crawls the urls and pushes the results in AIL

• The JSON format format can be extended via meta fields

11https://github.com/ail-project/ail-feeder-twitter
66 of 88

https://github.com/ail-project/ail-feeder-twitter


Feeding AIL with your own data - import dir.py (1)

/!\ requirements:

• Each file to be fed must be of a reasonable size:
◦ ∼ 3 Mb / file is already large
◦ This is because some modules are doing regex matching
◦ If you want to feed a large file, better split it in multiple ones

67 of 88



Feeding AIL with your own data - import dir.py (2)

1. Check your local configuration configs/core.cfg
◦ In the file configs/core.cfg,
◦ Add 127.0.0.1:5556 in ZMQ Global
◦ (should already be set by default)

2. Launch import dir.py with de directory you want to import
◦ import dir.py -d dir path

68 of 88



Starting the framework

69 of 88



Running your own instance from source

Accessing the environment and starting AIL

1

2 # Launch the system and the web interface

3 cd bin/

4 ./LAUNCH -l

70 of 88



Running your own instance using the virtual machine

Login and passwords:

1 # Web interface (default network settings)

2 https://127.0.0.1:7000/

3 # Web interface:

4 admin@admin.test

5 Password1234

6 # SSH:

7 ail

8 Password1234

71 of 88



Updating AIL

Launch the updater:

1 cd bin/

2 # git pull and launch all updates:

3 ./LAUNCH -u

4

5

6 # PS:

7 # The Updater is launched by default each time

8 # you start the framework with

9 # ./LAUNCH -l

72 of 88



AIL ecosystem - Challenges and design

73 of 88



AIL ecosystem: Technologies used

Programming language: Full python3

Databases: Redis and ARDB

Server: Flask

Data message passing: ZMQ, Redis list and Redis
Publisher/Subscriber

74 of 88



AIL global architecture: Data streaming between
module

75 of 88



AIL global architecture: Data streaming between
module (Credential example)

76 of 88



Message consuming

Modulex

Redis set

Moduley Moduley

SPOP SPOP

SADD

→ No message lost nor double processing

→ Multiprocessing!

77 of 88



Creating new features

78 of 88



Developing new features: Plug-in a module in the
system

Choose where to put your module in the data flow:

Then, modify bin/package/modules.cfg accordingly
79 of 88



Writing your own modules - /bin/template.py

1 import time

2 from pubsublogger import publisher

3 from Helper import Process

4 if __name__ == ’__main__ ’:

5 # logger setup

6 publisher.port = 6380

7 publisher.channel = ’Script ’

8 # Section name in configs/core.cfg

9 config_section = ’<section name >’

10 # Setup the I/O queues

11 p = Process(config_section)

12 # Endless loop getting messages from the input queue

13 while True:

14 # Get one message from the input queue

15 message = p.get_from_set ()

16 if message is None:

17 publisher.debug("{} queue is empty , waiting".format(config_section))

18 time.sleep (1)

19 continue

20 # Do something with the message from the queue

21 something_has_been_done = do_something(message)

22

80 of 88



Contribution rules

81 of 88



How to contribute

82 of 88



Glimpse of contributed features

• Docker

• Ansible

• Email alerting

• SQL injection detection

• Phone number detection

83 of 88



How to contribute

• Feel free to fork the code, play with it, make some patches or add
additional analysis modules.

• Feel free to make a pull request for your contribution

• That’s it!

84 of 88



How to contribute

• Feel free to fork the code, play with it, make some patches or add
additional analysis modules.

• Feel free to make a pull request for your contribution

• That’s it!

84 of 88



How to contribute

• Feel free to fork the code, play with it, make some patches or add
additional analysis modules.

• Feel free to make a pull request for your contribution

• That’s it!

84 of 88



Final words

• Building AIL helped us to find additional leaks which cannot be
found using manual analysis and improve the time to detect
duplicate/recycled leaks.

→ Therefore quicker response time to assist and/or inform
proactively affected constituents.

85 of 88



Ongoing developments

• New JSON feeders

• Python API wrapper

• Data retention (export/import)

• MISP modules expansion

• auto Classify content by set of terms
◦ CE contents
◦ DDOS booters
◦ ...

• Crawled items
◦ duplicate crawled domains
◦ tor indexer

86 of 88



Annexes

87 of 88



Managing AIL: Old fashion way

Access the script screen

1 screen -r Script

Table: GNU screen shortcuts

Shortcut Action

C-a d detach screen

C-a c Create new window

C-a n next window screen

C-a p previous window screen

88 of 88


	Objectives
	AIL Framework
	Capabilities Overview
	Sources of leaks
	Current capabilities
	Live demo!
	MISP
	API
	Setting up the framework
	Feeding the framework
	Starting the framework
	AIL ecosystem - Challenges and design
	Creating new features
	Contribution rules
	Annexes
	Managing the framework


