
From soup to nuts: Building a 
Detection-as-Code pipeline
David French
Staff Adoption Engineer, Google Cloud
@threatpunter

Amsterdam 2024 FIRST Technical Colloquium

https://twitter.com/threatpunter


David French / About Me
● 18+ years in IT and cybersecurity

○ Blue team life: Detection Engineer, Threat Hunter, SOC Analyst

○ Vendor life: Threat Research, Detection Engineering, building SIEMs & 

EDRs

● Currently at Google Cloud (Chronicle Security Operations)

● Formerly Twilio, Elastic, Endgame, Capital Group

● Speaker at Black Hat and BSides

● Creator of Dorothy - Adversary simulation tool for Okta

● Likes to share knowledge & research: Blog, community 

contributions, MITRE ATT&CK

● Enjoys hiking, fishing, cycling, etc

2

https://github.com/elastic/dorothy
https://medium.com/threatpunter
https://github.com/threat-punter/community-contributions
https://github.com/threat-punter/community-contributions


Intended audience
● Anyone curious about how to manage detection 

content “as code” and how to get started

● Defensive security practitioners: Detection 

Engineers, SOC Analysts, etc

● Maybe you manage rules/signatures manually in 

your security tools and want to automate that

● If you’re already an expert in Detection-as-Code, 

you might not learn a ton 🙂

3



Agenda
1. What is Detection-as-Code?

2. Example Detection Engineering workflow with Detection-as-Code

3. Benefits of managing detection rules “as code”

4. Designing the pipeline

5. Building a pipeline to manage detection content

6. Wrap up
a. Key takeaways

b. Links to useful resources

c. Q&A

4



What is Detection-as-Code (DaC)?
● A set of principles that use code and automation to 

implement and manage threat detection content

● Traditional approach: Security team manually 

configures rules & signatures in security tools

● Detection-as-Code: Leverages software development 

practices & tools and treats detection content as 

code artifacts

● Gaining in popularity; growing acceptance

Can We Have “Detection as Code”? — Anton Chuvakin
Automating Detection-as-Code — John Tuckner
Detection-as-code: Why it works and where to start — Kyle Bailey
Detection as Code: Detection Development Using CI/CD — Patrick Bareiß, Jose Hernandez 5

https://medium.com/anton-on-security/can-we-have-detection-as-code-96f869cfdc79
https://www.tines.com/blog/automating-detection-as-code
https://www.youtube.com/watch?v=VaZp7A6Q9zE
https://www.youtube.com/watch?v=_JEvyem4ryg


Core technologies to automate detection 
content management

6

Software Development 
Platform

Provides a centralized 
workspace for managing Git 
repositories

Provides issue tracking, pull 
requests, code reviews, etc

Examples: GitHub, GitLab, 
Bitbucket

Version Control System 
(VCS)

Software that tracks changes 
to code over time

Facilitates structured 
development processes 
rollbacks

Examples: Git, Subversion, 
Mercurial

Continuous Integration / 
Continuous Delivery Tools

CI/CD tools automate the 
building, testing, and 
deployment of code changes

Examples: Jenkins, CircleCI, 
GitLab CI/CD, GitHub Actions



Example Detection-as-Code workflow
Propose Changes

Detection Engineer 
creates a new pull 
request in GitLab with 
their proposed rule 
changes

Example changes include 
creating a new rule or 
updating an existing rule

Run Tests

GitLab CI/CD pipeline 
job runs tests

Check for invalid rule 
configuration, duplicate 
rule names, verify rule 
syntax, etc

Execute tests to trigger 
rules and validate alert 
generation

Review & Approve

Security team discusses 
and collaborates on 
proposed changes in pull 
request

Changes are approved 
by one or more 
members of the security 
team

Deploy Changes

Changes are merged 
into the main branch of 
the GitLab project

A CI/CD pipeline detects 
changes to the main 
branch and pushes any 
pending updates to the 
SIEM

The latest version of all 
rules is pulled from the 
SIEM and committed to 
the repo to include 
updated metadata

7



Benefits of 
managing detection 
rules as code

8



Benefits of DaC: Collaboration (1)
● Challenge with traditional method of managing 

detection rules: People make mistakes

● DaC makes it easy for the team to discuss and 

contribute to changes to detection content

● A group of practitioners with unique insights 

working together will result in more accurate and 

effective rules

● Peer review reduces risk

○ False negatives

○ False positive explosions

9



Benefits of DaC: Collaboration (2)
● Easier to share detection content with the 

security community; stronger defense against 

attacks
○ Google: https://github.com/chronicle/detection-rules

○ Elastic: https://github.com/elastic/detection-rules

○ Splunk: https://github.com/splunk/security_content

○ Microsoft: https://github.com/Azure/Azure-Sentinel

○ Sigma: https://github.com/SigmaHQ/sigma

10

https://github.com/chronicle/detection-rules/
https://github.com/elastic/detection-rules
https://github.com/splunk/security_content
https://github.com/Azure/Azure-Sentinel
https://github.com/SigmaHQ/sigma


Benefits of DaC: Change management
● DaC provides more control over changes made to detection content

● Detection content stored in a software development platform e.g. GitHub, GitLab

● Changes are tested, reviewed, and approved before getting deployed to prod

● Some organizations require robust change control for both preventive and detective 

security controls

11



Benefits of DaC: Automation
● CI/CD tools used to ensure continuous process for building, testing, and deploying 

changes to detection content

● Tests reduce risk of introducing false positives/negatives

○ Reduce problem of alert fatigue

● Test in dev before deploying to prod

12



Designing & building 
the pipeline

13



Pipeline design

14

SIEM

GitLab CI/CD 
Pipeline Jobs

Run Tests

Get rules

Update rules

Write code to read, create, update, 
and verify rules via the SIEM’s API

Software development platform 
and version control system (VCS)



● At this point, we’re assuming:
○ We have some rules configured in our SIEM

○ Our SIEM has an API endpoint for managing rules

● SIEM vendors may provide example code or 

engineers may have to write it themselves

● Users expect parity between what they can do in the 

UI of a security tool versus the API

Managing detection rules via an API (1)

15Example code: https://github.com/chronicle/detection-rules/tree/main/tools/rule_manager

https://github.com/chronicle/detection-rules/tree/main/tools/rule_manager


● Python modules are wrapped in a simple CLI to use in CI/CD pipeline jobs in GitHub, 

GitLab, etc

● Additional modules & logic written to handle logic for updating rules

Managing detection rules via an API (2)

16



● Some teams use Infrastructure-as-Code tools to 

manage SIEM rules & configuration
○ e.g. Terraform, Pulumi

● Code is stored in central repository and CI/CD 

jobs “apply” changes to “infrastructure” (security 

tools)

● These tools can overwrite changes made in the UI 

if that’s your desired behavior

Managing detection rules via an API (3)

17Example code for managing rules in Sumo Logic using Terraform: https://github.com/threat-punter/detection-as-code-example

https://github.com/threat-punter/detection-as-code-example


GitLab project layout

18

Python modules for managing 
rules via SIEM’s API CLI with commands to retrieve, 

update, and verify rules via SIEM’s API

SIEM rules stored as code 
artifacts

GitLab CI/CD pipeline 
configuration file

Rule configuration file

Used to configure rule state (e.g. 
enabled/disabled/archived)

Used to store rule metadata (e.g. 
rule ID, create time, etc)

Example code: https://github.com/chronicle/detection-rules/tree/main/tools/rule_manager

https://github.com/chronicle/detection-rules/tree/main/tools/rule_manager


Defining a rule schema: Benefits
● Provides a way to structure and standardize 

rules

● Ensures rule structure is consistent across 

authors

● Define which parts are required/optional

● Automation - Easier to validate, test, and deploy 

detection content if it’s in a consistent format

● Easier to share rules within the community

● Example of a schema using Pydantic ➡
19

https://docs.pydantic.dev/latest/


Defining a rule schema: Popular formats
● YAML - Used by Splunk and Sigma

● TOML - Used by Elastic

● Example of a YARA-L rule in TOML 

format ➡
● I decided to decouple the rule config & 

metadata from the rule logic
○ Granular control over deploying to multiple 

SIEM instances (e.g. if you’re deploying to dev, 

prod, etc or an MSSP deploying to multiple 

customers)
20

https://github.com/splunk/security_content
https://github.com/SigmaHQ/sigma/tree/master
https://github.com/elastic/detection-rules


Validating rules against a schema
● Catch issues as early as possible; minimize risk of deploying broken rules

○ Missing/invalid values

○ Misconfigurations e.g. a rule that’s enabled cannot be archived until it’s disabled

○ Invalid rule/file names

● Pydantic and Marshmallow are great for this ⬇

21

https://docs.pydantic.dev/latest/
https://marshmallow.readthedocs.io/en/stable/


Verifying rule syntax
● Options to verify the syntax of a rule:

○ Via your SIEM’s API if supported

○ Develop your own linter for rule parsing & validation (++ effort to create and maintain)

● Some SIEMs prevent a rule from being created/modified if syntax errors are found

22



Pulling the latest rules from the SIEM
● We need to keep the GitLab project up-to-date with the latest version of all rules in 

the SIEM

● CLI argument pulls latest rules from SIEM and writes rule files and rule config file

23



Dumping the rule logic and rule configuration
● Rule logic is written to the rules directory

● Rule configuration and metadata is written to a rule_config.yaml file

24



Syncing rules between the SIEM and GitLab
● CI/CD pipeline job runs on a schedule

● Pulls latest rules from SIEM

● Writes files containing rules and rule 

config

● Commits any changes to the main 

branch of the GitLab project

25Example code for “pull-latest-rules” CI/CD job: https://github.com/chronicle/detection-rules/blob/main/tools/rule_manager/.gitlab-ci.yml#L44

https://github.com/chronicle/detection-rules/blob/main/tools/rule_manager/.gitlab-ci.yml#L44


Example commit made by CI/CD job

26

Reviewing rule modifications that were made in the SIEM’s UI



Creating a new rule

27

Detection Engineer creates a GitLab pull request to create a new SIEM rule



Protecting the main branch
● Protect the main branch of your GitLab/GitHub project

● Prevent code from being merged until tests pass and approval is obtained

28



Lessons learned: Code reviews
● Your rule may be criticized (its logic or the basis for the rule)

● Common for conflict to occur at this stage

● Authors: Assume positive intent - try to avoid getting defensive

● Reviewers:
○ Provide constructive feedback, explain your thought process, and make 

suggestions

○ Review in a timely manner

● Build a culture of trust and knowledge sharing

● Develop a rule style guide

29

“Don’t be the reason improvements 

wither on the vine”



Testing rules: Don’t skip this step!

30

● If you’re not testing your detection rules on a regular 

basis, you’re on shaky ground

● Can you say with confidence that your logging, detection, 

and alerting is working properly?

● Broken detections result in false negatives 😢
● Challenges & considerations

○ Time: It can take longer to develop a test than the rule itself!

○ Build vs. buy: Do we have the expertise to develop & automate 

tests?

○ Tech debt: What if you have hundreds of rules without tests? 🫤



The problem with untested rules

31

● Environments drift

● Infrastructure and technologies come and go, 

software is updated

● Logging interruptions occur

● Vendors change their logging schemas

● Attack techniques no longer work (relevancy)

● Active detection rules that will never fire waste 

detection engine resources



Options for testing rules

32

● Run the rule against sample data
○ Better than having no tests at all

● Trigger the rule and validate alerts were generated
○ More comprehensive

○ Validates logging, detection, and alerting pipeline is working

○ Get started with free projects like Atomic Red Team and Red 

Team Automation

○ You can’t test everything (and that’s okay) e.g. anomaly 

detections

https://github.com/redcanaryco/atomic-red-team
https://github.com/elastic/detection-rules/tree/main/rta
https://github.com/elastic/detection-rules/tree/main/rta


Triggering the rule

33

Run code in CI/CD pipeline job to carry out actions via Okta API and trigger 

detection rule

Example code: https://github.com/threat-punter/detection-as-code-example/blob/main/detections_cli/triggers/assign_admin_role_to_okta_user.py

https://github.com/threat-punter/detection-as-code-example/blob/main/detections_cli/triggers/assign_admin_role_to_okta_user.py


Validating alerts

34

● Validate that alert was generated by detection rule

● Check for your test indicators in alerts

● Close alerts and any tickets/cases that were created

● CI/CD pipeline job success/failure

Example code: https://github.com/threat-punter/detection-as-code-example/blob/main/detections_cli/__main__.py#L74

https://github.com/threat-punter/detection-as-code-example/blob/main/detections_cli/__main__.py#L74


Deploying changes to the SIEM

35

Changes are pushed to the SIEM after code is merged into the main branch

Example code for “update-remote-rules” CI/CD job: https://github.com/chronicle/detection-rules/blob/main/tools/rule_manager/.gitlab-ci.yml#L90

https://github.com/chronicle/detection-rules/blob/main/tools/rule_manager/.gitlab-ci.yml#L90


Syncing rule metadata to GitLab

36

● After changes are deployed to SIEM

● Pipeline job pulls latest rules from SIEM and commits updated metadata to rule 

config file in GitLab project



Modifying rules

37

● Detection Engineer creates a branch and 

pull request with proposed changes

● Tests succeed

● Peer review & approval obtained

● Changes are merged to the main branch

● Rule changes are deployed to SIEM



Auditing for rule changes

38

● Commit history in VCS makes it easy to 

review prior versions of a rule

● Context around changes is preserved in 

pull requests

● Can revert to a previous version if 

needed



Benefits of centralized detection management
● Auditors might ask for proof that you have a 

detection implemented (and that its tested)

○ For example, detections related to data loss 

prevention or SWIFT compliance

● Purple Teaming – Offensive team can analyze 

detections and look for ways to evade them

● Code repository is searchable

○ Can quickly check if you have a rule for an attack 

technique

39



Key takeaways

40



41

No

Small orgs with simple, static IT environment

Limited security budget

Not much security data available for analysis

Small (or no dedicated) security team

Security tools with no support for integration

Partnering with an MSSP may be a good fit 
(they’re likely using DaC to manage rules across 
multiple customers)

Yes

Large orgs with complex, dynamic IT environment 
and lots of normalized security data available

Auditing & change management needed for detective 
security controls

Security budget for Detection Engineers and required 
engineering expertise

Modern security tools (manage content via API)

Which organizations can benefit from adopting DaC?



Advantages of adopting Detection-as-Code

42

● Increased collaboration around rule development 

and sharing in the community
○ A group of practitioners with unique insights working 

together will result in more accurate and effective rules

● More control over changes to detections

● Automated testing
○ Reduced risk of introducing false positives/negatives

○ Provides confidence that your logging, detection, and 

alerting is working

○ Helps identify issues quickly before misses occur



Useful resources

43

● Detection-as-Code
○ My blog series and example code for getting started: 1 and 2

○ Can We Have “Detection as Code”? — Anton Chuvakin

○ Automating Detection-as-Code — John Tuckner

○ Detection-as-Code: Why it works and where to start — Kyle Bailey

○ Detection as Code: Detection Development Using CI/CD — Patrick Bareiß, Jose Hernandez

○ Detection-as-Code panel — Julie Agnes Sparks, Jackie Bow, Jessica Rozhin, Louis Barrett

● Detection Engineering
○ Detection Engineering Weekly — Zack Allen

○ Practical Threat Detection Engineering — Megan Roddie, Jason Deyalsingh, Gary J. Katz

● Free rules: Google, Elastic, Splunk

https://medium.com/threatpunter/from-soup-to-nuts-building-a-detection-as-code-pipeline-28945015fc38
https://www.googlecloudcommunity.com/gc/Community-Blog/Getting-Started-with-Detection-as-Code-and-Chronicle-Security/ba-p/702154
https://medium.com/anton-on-security/can-we-have-detection-as-code-96f869cfdc79
https://www.tines.com/blog/automating-detection-as-code
https://www.youtube.com/watch?v=VaZp7A6Q9zE
https://www.youtube.com/watch?v=_JEvyem4ryg
https://www.youtube.com/watch?v=jjgjRsQuUeY
https://www.detectionengineering.net/
https://www.amazon.com/Practical-Threat-Detection-Engineering-hands/dp/1801076715
https://github.com/chronicle/detection-rules/tree/main
https://github.com/elastic/detection-rules
https://github.com/splunk/security_content


Thank you

44

David French
Staff Adoption Engineer, Google Cloud
@threatpunter

https://twitter.com/threatpunter


Q&A

45



Acknowledgement

46

Thanks to the following people for their contributions to the security community and/or 

providing me with valuable feedback:

Kyle Bailey, Patrick Bareiss, Adam Cole, James Black, Anton Chuvakin, Dan Dye, Serhat 

Gülbetekin, Jose Hernandez, Dave Herrald, Justin Ibarra, Chris Long, Dan Lussier, 

Vishwanath Mantha, Christopher Martin, Anton Ovrutsky, Julie Agnes Sparks, John 

Stoner, John Tuckner, Wade Wells, Ross Wolf


