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Outta scopes

1. Unpublished/Undetected vulnerabilities:
• we study publication of CVEs;

• keep it high-level, no code analysis.

2. Probability of exploitation:

• we study publication of CVEs;
• . . . but check the work of the EPSS!
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State of the ART Models to predict vulnerabilities

Goal Data Method Approach Projects/Libs. The rare-event nature of vulnerability disclosures usually passes unnoticed
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er. AH SA ML Language # Purport

[4] ✓ ✓ ✓ ✓ C 3

[2] ✓ ✓ ✓ ✓ ✓ PHP 3

[16] ✓ ✓ ✓ ✓ ✓ ✓ Java 4

[5] ✓ ✓ ✓ ✓ ✓ C/C++, PHP, Java, JS, SQLSQL 10

Find vulnerabilities regardless of
existent logs such as CVEs
(although CWEs may be used).
This includes formal methods and
static/dynamic code analysis.

[11] ✓ ✓ ✓ ✓ ✓ C 3

[13] ✓ ✓ ✓ ✓ ✓ C 1

[15] ✓ ✓ ✓ ✓ ✓ ✓ C, ASM 3

[14] ✓ ✓ ✓ ✓ ✓ ✓ C, ASM 1

Detect known vulnerabilities (and
their correlation to developer
activity metrics) from VCS
only—e.g. commit churn, peer
comments, etc.

[6] ✓ ✓ ✓ ✓ ✓ C/C++ 3

[8] ✓ ✓ ✓ ✓ ✓ Java 7

[23] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 4

[24] ✓ ✓ ✓ ✓ ✓ Java 3

[25] ✓ ✓ ✓ ✓ ✓ Java 5

[21] ✓ ✓ ✓ ✓ ✓ C 7

Detect known vulnerabilities (and
their correlation to code metrics)
from code only—e.g. number of
classes, code cloning, cyclomatic
complexity, etc.

[1] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ >150k

[9] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 8

[3] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 5

[7] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++, Java 1

[22] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 2

Detect known vulnerabilities (and
their corr. to code and developer
activity metrics) from both code
and VCS, but without considering
the effect of dependencies in
their propagation.

[18] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 500

[12] ✓ ✓ ✓ ✓ ✓ ✓ Java >300k

[19] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java, Ruby, Python 450

[17] ✓ ✓ ✓ ✓ ✓ ✓ Java 200

Detect known vulnerabilities using
code or VCS, via dependency-
aware models that can find the
offending code to help correcting
it (own vs. third-party libraries).

[26] ✓ ✓ ✓ ✓ ✓ Agnostic 9

[10] ✓ ✓ ✓ ✓ ✓ Agnostic 25

[20] ✓ ✓ ✓ ✓ Agnostic 5

Time regression to predict
vulnerabilities from NVD logs, but
the models lack data from the
security domain. 9/34
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[17] ✓ ✓ ✓ ✓ ✓ ✓ Java 200

Detect known vulnerabilities using
code or VCS, via dependency-
aware models that can find the
offending code to help correcting
it (own vs. third-party libraries).

[26] ✓ ✓ ✓ ✓ ✓ Agnostic 9

[10] ✓ ✓ ✓ ✓ ✓ Agnostic 25

[20] ✓ ✓ ✓ ✓ Agnostic 5

Time regression to predict
vulnerabilities from NVD logs, but
the models lack data from the
security domain.
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State of the ART Models to predict vulnerabilities

Q2 Pr(vuln.) as function of software metrics

▶ ML & statistical analysis to correlate SE metrics to existent vulner-
abilities

▶ human-in-the-loop metrics, including VCS (#commits, seniority. . . )
▶ (a few) considerations of own and 3rd party dependencies

Q1 Pr(vuln.) as function of time

▶ time-regression models on CVE publications (≈ FinTech)
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Gap analysis

• Studies typically try to detect, not foretell vulnerabilities.

• The dependency tree is seldom analysed (own code only).

• The rare-event nature of vulnerabilities is disregarded.

We propose white-box model(s) to fill these gaps
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Time Dependency Trees

Dependency Trees in time

{D(ℓai)}3i=1:

dependency

c-chain

Time Dependency Tree

DT (ℓa)DT (ℓa):

Main library (ℓa)

Time span (T )Dt(ℓa) = D(ℓa1)

for any time point t ∈ T

after the release of ℓa1 and
before the release of ℓa2
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Properties of TDT DT (ℓ)DT (ℓ)

Theoretical

• Minimal graph representation (no lib-version repetition)

• Canonical for library ℓ and time span T

• Natural lifting of dependency trees to time

Practical

• Time-indexing D t(ℓ) yields the dep. tree at time t ∈ T

• Library-slicing DT (ℓ)
∣∣
d

yields all instances of
dependency d during time T

• Reachability analysis can spot single-points-of-failure
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SPoF in time and dependencies

My personal project uses ℓ1.0
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Rules of the game

▶ Count each CVE as one data point
• must choose one affected version!

▶ Discriminate per development environment

• e.g. Java and C/C++ have different vuln. (and times!)

▶ Discriminate per library type

• consider security-relevant code metrics
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Security-relevant code metrics

Used in remote networks
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Security-relevant code metrics

(Own) Code size
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Security-relevant code metrics

Goal Data Method Approach Projects/Libs. The rare-event nature of vulnerability disclosures usually passes unnoticed

W
or

k

Disc
.

Pre
d.

CV
Es

Co
de VC

S
Dep

.
Co

rr.
Cla

s.
T.S

er. AH SA ML Language # Purport

[4] ✓ ✓ ✓ ✓ C 3

[2] ✓ ✓ ✓ ✓ ✓ PHP 3

[16] ✓ ✓ ✓ ✓ ✓ ✓ Java 4

[5] ✓ ✓ ✓ ✓ ✓ C/C++, PHP, Java, JS, SQLSQL 10

Find vulnerabilities regardless of
existent logs such as CVEs
(although CWEs may be used).
This includes formal methods and
static/dynamic code analysis.

[11] ✓ ✓ ✓ ✓ ✓ C 3

[13] ✓ ✓ ✓ ✓ ✓ C 1

[15] ✓ ✓ ✓ ✓ ✓ ✓ C, ASM 3

[14] ✓ ✓ ✓ ✓ ✓ ✓ C, ASM 1

Detect known vulnerabilities (and
their correlation to developer
activity metrics) from VCS
only—e.g. commit churn, peer
comments, etc.

[6] ✓ ✓ ✓ ✓ ✓ C/C++ 3

[8] ✓ ✓ ✓ ✓ ✓ Java 7

[23] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 4

[24] ✓ ✓ ✓ ✓ ✓ Java 3

[25] ✓ ✓ ✓ ✓ ✓ Java 5

[21] ✓ ✓ ✓ ✓ ✓ C 7

Detect known vulnerabilities (and
their correlation to code metrics)
from code only—e.g. number of
classes, code cloning, cyclomatic
complexity, etc.

[1] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ >150k

[9] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 8

[3] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 5

[7] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++, Java 1

[22] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 2

Detect known vulnerabilities (and
their corr. to code and developer
activity metrics) from both code
and VCS, but without considering
the effect of dependencies in
their propagation.

[18] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 500

[12] ✓ ✓ ✓ ✓ ✓ ✓ Java >300k

[19] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java, Ruby, Python 450

[17] ✓ ✓ ✓ ✓ ✓ ✓ Java 200

Detect known vulnerabilities using
code or VCS, via dependency-
aware models that can find the
offending code to help correcting
it (own vs. third-party libraries).

[26] ✓ ✓ ✓ ✓ ✓ Agnostic 9

[10] ✓ ✓ ✓ ✓ ✓ Agnostic 25

[20] ✓ ✓ ✓ ✓ Agnostic 5

Time regression to predict
vulnerabilities from NVD logs, but
the models lack data from the
security domain. 20/34
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On overfitting and rare events
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▶ Count each CVE as one data point

▶ Discriminate per development environment

▶ Discriminate per library type

▶ Clusterisation mustn’t be too thin

• few divisions per metric-dimension
• few metric-dimensions
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Vulnerabilities from any dependency

Q: PrA,B(t) = probability of vuln. in ℓA or ℓB before t

A: PrA,B(t) = Pr(min(ℓA, ℓB) ⩽ t) = 1− (1− PrA(t))(1− PrB(t))
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Some things done

▶ Time Dependency Trees

• Aggregate dependency and code-evolution data
• Minimal representation with nice properties
• Framework for large-scale project analysis

▶ Probability of vulnerabilities as a function of time

• Express time from library release to CVE publication
• Discriminate per type of library (security-relevant props.)
• Base information for probability forecasting
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