Predicting Security Attacks in FOSS

Why you want it and one way to do it

C.E. Budde R.Paramitha F Massacci
Universita di Trento (IT) & Vrije Universiteit (NL)

VulngCast 2023 FIRST Technical Colloquium

9" ProSXED

AssureM0SS

1. Introduction
2. Background
3. Forecast model

4. Conclusions

Introduction

1. Introduction

The myth of the bleeding edge

Why You Should Update All Your Software

Updates may sometimes be painful, but they're necessary to keep
your devices and data secure on a dangerous internet.

BY CHRIS HOFFMAN PUBLISHED AUG 28, 2020

Quick Links

Security Updates 101

What's the Risk Reallv?

4/34

https://carpenterbrut.bandcamp.com/
https://www.howtogeek.com/686687/why-you-should-update-all-your-software/#you-don-t-always-need-the-latest-versions

The myth of the bleeding edge

Why You Should Update All Your Software

Updates may sometimes be painful, but they're necessary to keep
your devices and data secure on a dangerous internet.

BY CHRIS HOFFMAN PUBLISHED AUG 28, 2020

Quick Links

Security Updates 101

What's the Risk Reallv?

4/34

https://www.howtogeek.com/686687/why-you-should-update-all-your-software/#you-don-t-always-need-the-latest-versions
https://loonylabs.files.wordpress.com/2021/01/time-management.jpeg?w=1024

Some motivation (plz!)

org.redisson:redisson

B2 {2
3181 | 3.19.0
1
)
4
4.1.86 io.netty:netty-codec
"Nov'22 "Dec'22 time

a2 Aug22 "Sep22 " Oct22

5/34

Some motivation (plz!)

org.redisson:redisson

{5)

i ¥

io.netty:netty-codec

time

"Nov'22 "Dec22 \
CVE-2022-41915 disclosed!
Ly affects netty [4.1.83, 4.1.86)

I I I
Jul'22 Aug'22 Sep'22 Oct'22

5/34

Some motivation (plz!)

org.redisson:redisson

-_€3-18-J _{ZZJQJ

(A (A .-
a7 3.17.6 i
1 1
\ Y
[d Fd
4.1.79 4.1.80, io.netty:netty-codec
a2 Aug22 "Sep22 " Oct22 "Nov'22 IDec'ZZ'\ ™ time

CVE-2022-41915 disclosed!
Ly affects netty [4.1.83, 4.1.86)

5/34

Some motivation (plz!)

Correct Correct Wrong Forced
MOVE

MOVE STAY MOVE
‘\ \ \ \ org.redisson:redisson
3.18.1 3.19.0

i

Correct
STAY

A

io.netty:netty-codec

time

"Nov'22 "Dec22 \
CVE-2022-41915 disclosed!
Ly affects netty [4.1.83, 4.1.86)

I I I
Jul'22 Aug'22 Sep'22 Oct'22

5/34

Some motivation (plz!)

Hindsight!

Correct Correct Wrong Forced
MOVE MOVE

MOVE STAY
‘\ \ \ \ org.redisson:redisson
3.18.1 3.19.0

i

Correct
STAY

S

io.netty:netty-codec

time

T T T T T

Jul'22 Aug'22 Sep'22 Oct'22 Nov'22 Dec'22 '\
CVE-2022-41915 disclosed!

Ly affects netty [4.1.83, 4.1.86)

5/34

Some motivation (plz!)

Hindsight! g
Wrong Forced

Correct Correct Correct
MOVE MOVE

STAY MOVE STAY
‘\ ‘\ \ \ \ org.redisson:redisson
) -.)
3.18.1 3.19.0

i

io.netty:netty-codec

time

T T T T T

Jul'22 Aug'22 Sep'22 Oct'22 Nov'22 Dec'22 '\
CVE-2022-41915 disclosed!

Ly affects netty [4.1.83, 4.1.86)

5/34

https://openclipart.org/detail/324072/flux-capacitator

Some motivation (plz!)

Developer perspective in time:

org.redisson:redisson

{s
4.1.79 io.netty:netty-codec
1 1 1 N
a2 Aug22 "Sep22 " Oct22 Nov'22 Dec'22 time

5/34

Some motivation (plz!)

Developer perspective in time:

org.redisson:redisson

L

EAYA

1

\

t

4.1.79 io.netty:netty-codec
a2 Aug22 "Sep22 " Oct22 "Nov'22 "Dec22 ™ time

5/34

Some motivation (plz!)

Developer perspective in time:

org.redisson:redisson

io.netty:netty-codec

AL

H 3475

1

\

[d fd

4.1.79 4.1.80,

T T 1 N

ur22 Aug22 "sep'22 " Oct22 Nov'22 Dec'22 time

5/34

Some motivation (plz!)

Developer perspective in time:

org.redisson:redisson

io.netty:netty-codec

1 1 1 N
a2 Aug22 "Sep22 " Oct22 Nov'22 Dec'22 time

5/34

Some motivation (plz!)

Developer perspective in time:

org.redisson:redisson

io.netty:netty-codec

1 1 1 N
a2 Aug22 "Sep22 " Oct22 Nov'22 Dec'22 time

5/34

Some motivation (plz!)

Developer perspective in time:

org.redisson:redisson

io.netty:netty-codec

1 1 1 N
a2 Aug22 "Sep22 " Oct22 Nov'22 Dec'22 time

5/34

Some motivation (plz!)

Developer perspective in time:

org.redisson:redisson

io.netty:netty-codec

1 1 1 N
a2 Aug22 "Sep22 " Oct22 Nov'22 Dec'22 time

5/34

Some motivation (plz!)

Developer perspective in time:

org.redisson:redisson

io.netty:netty-codec

T 1 N
a2 Aug22 "Sep22 " Oct22 "Nov'22 Dec'22 \ time
CVE-2022-41915 disclosed!
Ly affects netty [4.1.83, 4.1.86)

5/34

Some motivation (plz!)

Developer perspective in time:

Correct Correct Correct Wrong Forced
STAY MOVE STAY MOVE MOVE

‘\ ‘\ \ \ \ org.redisson:redisson
t

: 3.17.5 3.18.1 3.19.0

1

Y

t

4.1.79 io.netty:netty-codec
a2 Aug22 "Sep22 " Oct22 "Nov'22 IDec'ZZ'\ ™ time

CVE-2022-41915 disclosed!
Ly affects netty [4.1.83, 4.1.86)

5/34

Some motivation (plz!)

Developer perspective in time:

org.redisson:redisson

r [a ———— [a r [a -—~[[a J r——~[[a J
3a7s 3.17.6 HAEAYY) .18, 3181) | 3190
| ! I 1
Y ¥ ¥ v

?, (3 {,

4.1.79 4.1.82 1. 1. 4.1.85 4.1.86 io.netty:netty-codec

T T 1 "
a2 Aug22 "Sep22 " Oct22 Nov'22 Dec'22 time

Is there a best time to update?

5/34

Questions

Q1 How does time affect the Pr(vuln.)?

Q2 Which other factors affect Pr(vuln.)?

6/34

Questions

Q1 How does time affect the Pr(vuln.)?

> best time to update?

Q2 Which other factors affect Pr(vuln.)?

6/34

Questions

Q1 How does time affect the Pr(vuln.)?

> best time to update?

Q2 Which other factors affect Pr(vuln.)?

> measurable software metrics

6/34

Outta scopes

1. Unpublished/Undetected vulnerabilities:
- we study publication of CVEs;

7134

https://www.first.org/epss/model

Outta scopes

1. Unpublished/Undetected vulnerabilities:
- we study publication of CVEs;
- keep it high-level, no code analysis.

7134

https://www.first.org/epss/model

Outta scopes

1. Unpublished/Undetected vulnerabilities:
- we study publication of CVEs;
- keep it high-level, no code analysis.

2. Probability of exploitation:
- we study publication of CVEs;

7134

https://www.first.org/epss/model

Outta scopes

1. Unpublished/Undetected vulnerabilities:
- we study publication of CVEs;
- keep it high-level, no code analysis.

2. Probability of exploitation:
- we study publication of CVEs;
- ... but check the work of the EPSS!

7134

https://www.first.org/epss/model

2. Background

State of the ART Models to predict vulnerabilities

x Goal Data Method Approach Projects/Libs.
3
e @
= R SRV & o & AH SA ML Language # Purport
Q7 Q SRS < S [SER guag
1) v v v v < 3 Find vulnerabilities regardless of
existent logs such as CVEs
&l v v oo vo|me 3 (although CWEs may be used)
hel v v v v v v jaa 4 This includes formal methods and
s] v v v v v C/C#, PHP, Java,J5,SQL 10 Static/dynamic code analysis,
[11] v v v v v € 3 Detect known vulnerabilities (and
their correlation to developer
1 C 1
sl 4 4 4 7 4 activity metrics) from VCS
sl v v v v v v G, ASM 3 only—eg. commit churn, peer
[14] v v v v v v C,ASM 1 comments, etc.
[6] v v v v v oo 3
(8] v v v v v Java 7 Detect known vulnerabilities (and
23] v v v v v v v e , their correlation to code metrics)
from code only—e.g. number of
v v v v v Java 3 classes, code cloning, cyclomatic
[25] v v v v v Java 5 complexity, etc
2 v v v v v c 7
[v v v v v v v o >150k Detect known vulnerabilities (and
[o] v v v v v v clon g their corr. to code and developer
activity metrics) from both code
Bl v v v oV v v clew 5 and VCS, but without considering
71 v v v v v v v v cjemava 1 the effect of dependencies in
B2 v v v v v o o theirpropagation
[18] v v v v v v v Java 500 Detect known vulnerabilities using
bal v v v v v e P30t s o o e
[19] v v v v v v v v Java, Ruby, Python 450 offending code to help correcting
[17] v v v v v v Java 200 it(own vs. third-party libraries).
[26] v v v v v Agnostic g Time regression to predict
vulnerabilities from NVD logs, but
o] 7 4 7 7 7| 25 the models lack data from the
[20] v v v v Agnostic 5 security domain.

9/34

https://upload.wikimedia.org/wikipedia/commons/f/f8/Wallpapersden.com_anonymous-hacker-working_1280x720.jpg

State of the ART Models to predict vulnerabilities

x Goal Data Method Approach Projects/Libs.
5
o &
2 ¢ ¥ FEC @ o s oM Language # Purport
(4] v '\I v v v c 3 Find vulnerabilities regardless of
I existent logs such as CVES
1
2] Vo | \ v \ v PHP 3 (although CWES may be used)
hel v : | v v v v v 4 This includes formal methods and
5l v E 1 v v v v C/C#, PHP, Java,J5,SQL 10 Static/dynamic code analysis,
Sl
1] v Q: il 7 v v v € 3 Detect known vulnerabilities (and
5
mal | v RN | 7 7 7 . | their correlation to developer
E'] activity metrics) from VCS
sl vE o v v v v o C,ASM 3 only—eg commit churn, peer
1 v ERY v v v v C,ASM 1 comments, etc.
4] s ;
=l
[6] Ve o1 vV v v oo 3
B v g : v v v v Java 7 Detect known vulnerabilities (and
their correlation to code metrics)
2 v v v v v v v
(23] Java “* from code only—e.g, number of
1
v vV v v Java 3 classes, code cloning, cyclomatic
[25] v I v v v Java 5 complexity, etc
1
[21] v R v v v C 7
no v : v v 7 v oo >150k Detect known vulnerabilities (and
@ |« N v v v v v o g their corr.to code and developer
3l 7 1 y y 7 activity metrics) from both code
3 4 \ v v clc 5 and VCS, but without considering
7 c/c, Java 1 the effect of dependencies in
N ve 1 v v v v v v v i P
2 v |7z 7 < v v v e 2 | their propagation
[18] v 1 v v v v v v Java 500 Detect known vulnerabilities using
v S v . P 2300k C0de or VCS, via dependency-
! aware models that can find the
[19] v : v v v v v v v Java, Ruby, Python 450 offending code to help correcting
7] v : 1 v v v v v Java 200 it (own vs. third-party libraries).
126] 2 v 7 7 |eogEse o Time regression to predict
) vulnerabilities from NVD logs, but
ol = : v 7 7 7| 25 the models lack data from the
[20] \v, v v v Agnostic 5 security domain.

9/34

https://upload.wikimedia.org/wikipedia/commons/f/f8/Wallpapersden.com_anonymous-hacker-working_1280x720.jpg

State of the ART Models to predict vulnerabilities

x Goal Data Method Approach Projects/Libs.
3
o &
2 ¢ ¥ FEC @ o s oM Language # Purport
(4] v |’ '\I v BN v v c 3 Find vulnerabilities regardless of
existent logs such as CVEs
1
2] Vo | \ v \ v PHP 3 (although CWES may be used)
hel v : | v v v v v 4 This includes formal methods and
[s] & v v v v C/C#, PHP, Java,J5,SQL 10 Static/dynamic code analysis,
S sl
1] v Q:) v v v v € 3 Detect known vulnerabilities (and
5
mal | SN ‘3 7 7 e , their correlation to developer
pt] < activity metrics) from VCS
gl 5
bsl v v v 3 v vV G, ASM 3 only—eg commit churn, peer
1 v ERY v v v v C,ASM 1 comments, etc.
4] s ;
=l
(6] g ol v v v v clew 3
|
B v g : v v v v Java 7 Detect known vulnerabilities (and
@
their correlation to code metrics)
2 v v v 3 v v v v
[23] 1 g Java “* from code only—e.g, number of
[24] v | v v £ v v Java 3 classes, code cloning, cyclomatic
s] v : v v = v v Java 5 complexity, etc
[21] v R v o v v C 7
2
v iz 7 a5 v ooV v >150k Detect known vulnerabilities (and
L
@ | @ v v v v v clon g their corr. to code and developer
3l 7 1 y y 2 activity metrics) from both code
3 g v g v v cle 5 and vCs, but without considering
71 Ve I v v v = v v v v e jaa 1 the effect of dependencies in
p
I their propagation.
[22] v | v v v v v v c/c 2
[18] v I v v v v v v Java 500 Detect known vulnerabilities using
code or VCS, via dependency-
2] v : v v v v v Java >300k
aware models that can find the
[19] v : v v v v v v v Java, Ruby, Python 450 offending code to help correcting
7] v : 1 v v v v v Java 200 it (own vs. third-party libraries).
126 2 v 7 & | asmsie o Time regression to predict
) vulnerabilities from NVD logs, but
ol = : v 7 7 7| 25 the models lack data from the
[20] \v, v %Y v v Agnostic 5 security domain.

9/34

https://upload.wikimedia.org/wikipedia/commons/f/f8/Wallpapersden.com_anonymous-hacker-working_1280x720.jpg

State of the ART Models to predict vulnerabilities

x Goal Data Method Approach Projects/Libs.
5
o & A
2 ¢ ¥ FE @ M s M Language # Purport
(4] v '\I v BN v A v c 3 Find vulnerabilities regardless of
I v
CR cll e i o e,
' v/
hel v : 1 v vV v v Jaa 4 This includes formal methods and
" v
5l vg ! v v Vol C/C#, PHP, Java,J5,SQL 10 Static/dynamic code analysis,
Sl o
m v g v N v A v c 3 Detect known vulnerabilities (and
S0 1
2 their correlation to developer
1 v N7 v g v o v c 1
sl e @ activity metrics) from VCS
gl 5
sl v E 0 v v 3 v ! v o G ASM 3 only—eg commit churn, peer
ARl : N 7 v ! 7 & € ASM 1 comments, etc.
=l
el v 1 v v v ! v oo 3
| ?
8l v 4 : v v S g ! v Java 7 Detect known vulnerabilities (and
23] v 1 v v § v v TE] I v v Java \ their correlation to code metrics)
1 b S from code only—e.g. number of
]l v Y £ v 54 v Java 3 classes, code cloning, cyclomatic
Ls] v v B v s v Java 5 complexity, etc
1 & S0
v AR 15 Ve - v ¢ ;
9 Etigl
v iz 7 a5 v iA v >150k Detect known vulnerabilities (and
@ |« N v v v § v % il # o g theircorrto m;je and developer
\ H a1 . activity metrics) from both code
[3] v, AR A v S A v clc 5 and Vcs, but without considering
3 b
71 v I v v v = v - v v cjemava 1 the effect of dependencies in
2l v |7z 7 < v S v v dos o theirpropagation
[18] v [v v v v 5 v Java 500 Detect known vulnerabilities using
v S 7 -7 P 2300k C0de or VCS, via dependency-
4 gl aware models that can find the
[19] v : v v v v v v 21 v Java, Ruby, Python 450 offending code to help correcting
7] v : 1 v v v o v Java 200 it (own vs. third-party libraries).
126] 2 i 7 7 |eogEse o Time regression to predict
) | I vulnerabilities from NVD logs, but
ol = : 7 = 7 7| 25 the models lack data from the
[20] \v, v 92 o) v Agnostic 5 security domain

9/34

https://upload.wikimedia.org/wikipedia/commons/f/f8/Wallpapersden.com_anonymous-hacker-working_1280x720.jpg

State of the ART Models to predict vulnerabilities

x Goal Data Method Approach Projects/Libs.
5
3 3 A
s SRS S S & o &AM SA ML Language # Purport
g SRS S SRS guag
(4] v |’ "I v BN v iTh v 3 Find vulnerabilities regardless of
7 existent logs such as CVES
I [
2 o ' v VoY v e 3 (although CWEs may be used)
nel v : 1 v VooV vV Jaa 4 This includes formal methods and
w v
5l g ! v v Vol C/C+, PHP. Java, J5, SQL 10 Static/dynamic code analysis.
& P
M v Q: il 7 7 v A v c 3 Detect known vulnerabilities (and
2 ¥ their correlation to developer
1 v N7 v g v o v c 1
kel “';: 1 £ activity metrics) from VCS
sl vz v v 3 v | v v G, ASM 3 only—eg. commit churn, peer
ARl : N 7 v ! 7 & € ASM 1 comments, etc.
=l
6 ve 1 v v v ! v oo 3
| ?
B g v v g ! v Jaa 7 Detect known vulnerabilities (and
3 v T v % s 2 v v , their correlation to code metrics)
| b 5 1 from code only—e g number of
22] v I v v £| v EI i v Java 3 classes, code cloning, cyclomatic
51 v : v v K v 'E 1 v Java 5 complexity, etc
£l
[21] v 1 v v o v s v c 7
no v v v 3 v v S v oo >150k Detect known vulnerabilities (and
1 L s |
@ | @ v v v v 308 o g their corr.to code and developer
il v 1 v v 2 gl 's activity metrics) from both code
: 5l Vg 4 S v @i 5 and VS, but without considering
71 v I v v v = v - v v cjemava 1 the effect of dependencies in
2l v |7z 7 < v k= v v e 2] [thelpropagation
o
[18] v [v v v v 5 v Java 500 Detect known vulnerabilities using
1 2 -
v I 7 v 2 P 2300k Code or VCS, via dependency
gl aware models that can find the
) 8
o] v 1R voovoE v Java, Ruby, Python 450 offending code to help correcting
7] v : v v v NV Java 200 it (own vs. third-party libraries)
126] 2 . =, i 7 7 |eogEse o Time regression to predict
! Isregarded | vulnerabilities from NVD logs, but
[10] v : v isecurity p < 7 7| 25 the models lack data from the
[20] ‘v, v idata Lol v Agnostic 5 security domain.

9/34

https://upload.wikimedia.org/wikipedia/commons/f/f8/Wallpapersden.com_anonymous-hacker-working_1280x720.jpg

State of the ART Models to predict vulnerabilities

Q2 Pr(vuln.) as function of software metrics

Q1 Pr(vuln.) as function of time

9/34

State of the ART Models to predict vulnerabilities

Q2 Pr(vuln.) as function of software metrics

» ML & statistical analysis to correlate SE metrics to existent vulner-
abilities

Q1 Pr(vuln.) as function of time

9/34

State of the ART

Models to predict vulnerabilities

Q2 Pr(vuln.) as function of software metrics

» ML & statistical analysis to correlate SE metrics to existent vulner-
abilities

» human-in-the-loop metrics, including VCS (#commits, seniority...)

Q1 Pr(vuln.) as function of time

9/34

State of the ART

Models to predict vulnerabilities

Q2 Pr(vuln.) as function of software metrics
» ML & statistical analysis to correlate SE metrics to existent vulner-
abilities
» human-in-the-loop metrics, including VCS (#commits, seniority...)
» (a few) considerations of own and 3™ party dependencies

Q1 Pr(vuln.) as function of time

9/34

State of the ART Models to predict vulnerabilities

Q2 Pr(vuln.) as function of software metrics

» ML & statistical analysis to correlate SE metrics to existent vulner-
abilities

» human-in-the-loop metrics, including VCS (#commits, seniority...)
» (a few) considerations of own and 3™ party dependencies

Q1 Pr(vuln.) as function of time

» time-regression models on CVE publications (= FinTech)

9/34

Gap analysis

- Studies typically try to detect, not foretell vulnerabilities.

10/34

Gap analysis

- Studies typically try to detect, not foretell vulnerabilities.

- The dependency tree is seldom analysed (own code only).

10/34

Gap analysis

- Studies typically try to detect, not foretell vulnerabilities.
- The dependency tree is seldom analysed (own code only).

- The rare-event nature of vulnerabilities is disregarded.

10/34

Gap analysis

- Studies typically try to detect, not foretell vulnerabilities.
- The dependency tree is seldom analysed (own code only).

- The rare-event nature of vulnerabilities is disregarded.

We propose white-box model(s) to fill these gaps

10/34

Forecast model

3. Forecast model

Forecast model

3. Forecast model

Time Dependency Trees

los —»Lo.9 {10 - £11
3.0 -+ Z3.3 Y5.0.0 - ¥5.0.1--> ¥5.8.3
22.0 "> 22.1 g2

CVE root-lib PDFs

Time Dependency Trees

Dependency Trees in time

13/34

Time Dependency Trees

Dependency Trees in time

D(g,):
V4
ai /¢ \
eg N\

D(4q,):

13/34

Time Dependency Trees

Dependency Trees in time

D(ly,):

AN
gaQ £d3 \5

D(g,):
l /
ai Y/ \
gd‘: \ = fcl
la,

D(4q,):

13/34

Time Dependency Trees

Dependency Trees in time

{D(Zai) ?:1: EUIB
oy o/
YA SR
N e
da ECl él 1
dy
"

13/34

Time Dependency Trees

Dependency Trees in time Time Dependency Tree

(DY lo Drta) b,
g / ¥y *a .
l / la, by, Q\E 4 \
ai g \ 562 1 »tds /
4 \4 ds 601 / X\“"'V -- N
da Ecl él ng—" 0,
J dy EN b cchain
g d1 E d 1/ dependency

13/34

Time Dependency Trees

Dependency Trees in time Time Dependency Tree

{D(Zai) ?:1: EUIB g 7,/v€a3
ga / _-y*a B
gal / \24 £d3 \é alr‘/ 2\Agd»/ \
7 \ €d3 i C2 \’_, [A,
d2 Ecl / “ B ‘Kc —
J la, J S cchain
g d1 1 dependency

Main library (£)

13/34

Time Dependency Trees

Dependency Trees in time Time Dependency Tree

{D(Zai) ?:1: EUIB g 7,/v€a3
ga / _-y*a B
gal / \24 £d3 \é alr‘/ 2\Agd»/ \
7 \ €d3 i C2 \’_, [A,
d2 Ecl / “ B ‘Kc —
J la, J S cchain
g d1 1 dependency

Main library (£)

Time span (T)

13/34

Time Dependency Trees

Dependency Trees in time Time Dependency Tree
3 .
{D(Zaz) =1 g /EUIB g ’_V,;V/eag
/ y, a\g{ £d3 \f alrﬂ,,_v a2\€ \
v/ a\1< gds g =2 / _,/ s vecz
d /! \g .
J A, S cchain
g dq 1 dependency

Main library (£)

Di(la) = D(lay) Time span (T')
for any time pointt € T

after the release of ¢4, and

before the release of 44,

13/34

Properties of TDT Dr(¥)

- Minimal graph representation (no lib-version repetition)

14/34

Properties of TDT Dr(¥)

- Minimal graph representation (no lib-version repetition)

- Canonical for library ¢ and time span T'

14/34

Properties of TDT Dr(¥)

- Minimal graph representation (no lib-version repetition)
- Canonical for library ¢ and time span T'

- Natural lifting of dependency trees to time

14/34

Properties of TDT Dr(¥)

Theoretical

- Minimal graph representation (no lib-version repetition)
- Canonical for library ¢ and time span T'

- Natural lifting of dependency trees to time

14/34

Properties of TDT Dr(¥)

Theoretical

- Minimal graph representation (no lib-version repetition)
- Canonical for library ¢ and time span T'

- Natural lifting of dependency trees to time

Practical

- Time-indexing D, (¢) yields the dep. tree attime ¢t € T

14/34

Properties of TDT Dr(¥)

Theoretical

- Minimal graph representation (no lib-version repetition)
- Canonical for library ¢ and time span T'

- Natural lifting of dependency trees to time

Practical

- Time-indexing D, (¢) yields the dep. tree attime ¢t € T

- Library-slicing Dr(¢)| , yields all instances of
dependency d during time T

14/34

Properties of TDT Dr(¥)

Theoretical

- Minimal graph representation (no lib-version repetition)
- Canonical for library ¢ and time span T'

- Natural lifting of dependency trees to time
Practical

- Time-indexing D, (¢) yields the dep. tree attime ¢t € T

- Library-slicing Dr(¢)| , yields all instances of
dependency d during time T

- Reachability analysis can spot single-points-of-failure

14/34

SPoF in time and dependencies

My personal project uses ¢

| = l_

15/34

SPoF in time and dependencies

My personal project uses ¢

| |l = l_

15/34

SPoF in time and dependencies

My personal project uses ¢

| |l = |

R2.0 PR s > 22.2

Should | downgrade to £y ¢ or upgrade to #7117

15/34

Properties of TDT Dr(¥)

Theoretical

- Minimal graph representation (no lib-version repetition)
- Canonical for library £ and time span T'

- Natural lifting of dependency trees to time
Practical

- Time-indexing D,(¢) yields the dep. tree attimet € T

- Library-slicing DT(€)|d yields all instances of
dependency d during time T

- Reachability analysis can spot single-points-of-failure

16/34

Properties of TDT Dr(¥)

Theoretical
- Minimal graph representation (no lib-version repetition)
- Canonical for library £ and time span T'

- Natural lifting of dependency trees to time

Practical

- Time-indexing D,(¢) yields the dep. tree attimet € T

- Library-slicing DT(€)|d yields all instances of
dependency d during time T

- Reachability analysis can spot single-points-of-failure

- Can measure health/risk of development environment

16/34

Forecast model

3. Forecast model

Time Dependency Trees

los —» o9 10 - £11

3.0+ 3.3 Y5.0.0 > Y5.0.1 > Y5.84
| =" '

22.0 > 22.1 >W2.2

CVE root-lib PDFs

Publication of CVE since time of code release

org.redisson:redisson

io.netty:netty-codec

T T T T T T N
Jul'22 Aug'22 Sep'22 Oct'22 Nov'22 Dec'22 \ time
CVE-2022-41915 disclosed!
Ls affects netty [4.1.83, 4.1.86)

18/34

Publication of CVE since time of code release

org.redisson:redisson

io.netty:netty-codec

w22 Aug22 "sep22 time

I | CVE-2022-41915 disclosed!
Ls affects netty [4.1.83, 4.1.86)

18/34

Publication of CVE since time of code release

org.redisson:redisson

io.netty:netty-codec

w22 Aug22 "sep22 time

I | CVE-2022-41915 disclosed!
Ls affects netty [4.1.83, 4.1.86)

18/34

Publication of CVE since time of code release

org.redisson:redisson

io.netty:netty-codec

w22 Aug22 "sep22 time

I | CVE-2022-41915 disclosed!
Ls affects netty [4.1.83, 4.1.86)

18/34

Publication of CVE since time of code release

org.redisson:redisson

io.netty:netty-codec

22 " time

" Aug'22 "sep22

I | CVE-2022-41915 disclosed!
Ls affects netty [4.1.83, 4.1.86)

— : |

18/34

Publication of CVE since time of code release

org.redisson:redisson

io.netty:netty-codec

Jul'22

Probability of CVE public.

" Aug'22

1.0e-02

8.0e-03

6.0e-03

4.0e-03

2.0e-03

T T
Sep'22 Oct'22
L

—

0 M 2M 3M 4M

Time since lib. release

T time

{ CVE-2022-41915 disclosed!

Ls affects netty [4.1.83, 4.1.86)

18/34

Publication of CVE since time of code release

org.redisson:redisson

io.netty:netty-codec

Jul'22

Probability of CVE public.

" Aug'22

1.0e-02

8.0e-03

6.0e-03

4.0e-03

2.0e-03

T T
Sep'22 Oct'22
L

—

0 M 2M 3M 4M

Time since lib. release

T time

{ CVE-2022-41915 disclosed!

Ls affects netty [4.1.83, 4.1.86)

18/34

Rules of the game

» Count each CVE as one data point

- must choose one affected version!

19/34

Rules of the game

» Count each CVE as one data point : =
Decist
- must choose one affected version! A\\::::::::if‘

19/34

Rules of the game

» Count each CVE as one data point : =
Dec'g
- must choose one affected version! A\\:::::::Z\f‘

19/34

Rules of the game

» Count each CVE as one data point

- must choose one affected version!

» Discriminate per development environment

- e.g. Java and C/C++ have different vuln. (and times!)

19/34

Rules of the game

» Count each CVE as one data point

- must choose one affected version!

» Discriminate per development environment

- e.g. Java and C/C++ have different vuln. (and times!)

5 &

19/34

Rules of the game

» Count each CVE as one data point

- must choose one affected version!

» Discriminate per development environment

- e.g. Java and C/C++ have different vuln. (and times!)

» Discriminate per library type

- consider security-relevant code metrics

19/34

Rules of the game

» Count each CVE as one data point

- must choose one affected version!

» Discriminate per development environment

- e.g. Java and C/C++ have different vuln. (and times!)

» Discriminate per library type

- consider security-relevant code metrics

19/34

Security-relevant code metrics

#{CVEs from the NVD}

4000

3000

2000

1000

CVEs with the 'Java' keyword

6
Physical

199
11
Local Adjacent
Attack Vector

Network

20/34

Security-relevant code metrics

Used in remote networks

CVEs with the 'Java' keyword

4000
-~
o
; 3000
[}
d=
=]
£
e
w2000
n
w
>
O
o
H#*

1000

199
od 6 11
Physical Local Adjacent Network
Attack Vector

20/34

Security-relevant code metrics

1
1
- . . 1 .
Ll L L1 L1l L1 I L1 L
23456789 101112131415161715192021 22232425252723293031 3233 34 35 36 37 38 39 40 41 42 43 44 45 46 48 49 51 5257595051 5253
Num vulnerabilities

4
10 B von T Small libs 1 Bigibs
- ° o oo (<= 100KLoCs) ! (>100 KLoCS)
5.2 Ao sl e P E
g 10 v ‘»oj'b.o
> 77777715@!595”‘4’6’57/'%
g o Hmedian leverage for small libs)®° © 3
% 10 :] 3
o Leverage = 0.48_—" s wamo s e r }5?
;E; (median leverage for big libs) LI o
o H £
&' b A
B 4% :
810 ! ! 1
8 102 10% 10* 10° 10°
Own size (log-scale), LoCs

T e I B O B L e I
i g (n° : :
gop [l i ; | : E
|| i : I
5 A A S A H ‘ H | Leverage = 4
g sH ﬁﬁmﬁmﬁﬁaa.ﬁADﬂAmA@ giitg Qu B i U IR
: HH?U&DLUH*UUHUUH-H AR R “MH
k] 1 7 i i | |
ol L] R S S I O S O [4
s | i i | . [
F i I cea el - e 1 Ll IR
= | | 1 L1 [

1 5

20/34

Security-relevant code metrics

(Own) Code size

1
1
- . . 1 .
Ll L L1 L1l L1 I L1 L
23456789 101112131415161715192021 22232425252723293031 3233 34 35 36 37 38 39 40 41 42 43 44 45 46 48 49 51 5257595051 5253
Num vulnerabilities

4
10 B von T Small libs 1 Bigibs
- ° o oo (<= 100KLoCs) ! (>100 KLoCS)
5.2 Ao sl e P E
g 10 v ‘»oj'b.o
> 77777715@!595”‘4’6’57/'%
g o Hmedian leverage for small libs)®° © 3
% 10 :] 3
o Leverage = 0.48_—" s wamo s e r }5?
;E; (median leverage for big libs) LI o
o H £
&' b A
B 4% :
810 ! ! 1
8 102 10% 10* 10° 10°
Own size (log-scale), LoCs

T e I B O B L e I
i g (n° : :
gop [l i ; | : E
|| i : I
5 A A S A H ‘ H | Leverage = 4
g sH ﬁﬁmﬁmﬁﬁaa.ﬁADﬂAmA@ giitg Qu B i U IR
: HH?U&DLUH*UUHUUH-H AR R “MH
k] 1 7 i i | |
ol L] R S S I O S O [4
s | i i | . [
F i I cea el - e 1 Ll IR
= | | 1 L1 [

1 5

20/34

Security-relevant code metrics

x Goal Data Method Approach Projects/Libs.
s
o ©
= & @ & F © & & & AH SA ML language # Purport
[4) v v v v 3 Find vulnerabilities regardless of
N existent logs such as CVEs
el v v v v v pHP 3 (although CWEs may be used)
[el v v v v v v aa 4 This includes formal methods and
5] v v v v v C/Cw, PHP, Java,)5, SQL 10 Static/dynamic code analysis,
[n] 's v v 's v C 3 Detect known vulnerabilities (and
i | v v v v c . their correlation to developer
activity metrics) from VCS
sl v v v v v o C.ASM 3 only—eg. commit churn, peer
[14] v v v v v v C, ASM 1 comments, etc.
(6] v v v v v oo 3
(8] v v v v v Java 7 Detect known vulnerabilities (and
[23] v v v v v v v Java 4 their correlation to code metrics)
from code only—eg. number of
d v vV v v Java 3 classes, code cloning, cyclomatic
[25] v v v v v Java 5 complexity, etc.
[1] v v v v v C 7
) v v vV v v v ocles >150k Detect known vulnerabilities (and
[o] v v v v v v Clow g their corr. to code and developer
activity metrics) from both code
bl v v v v v v C/ch 5 and VCS, but without considering
7 v v v v v v v v e Java 1 the effect of dependencies in
2] v v v v v v v o 5 | U e
[18] v v v v v v v Java 500 Detect known vulnerabilities using
il I v v v < [2300kt o e
hol v v o v v v v v v Java, Ruby, Python 450 offending code to help correcting
7] 's v v v v v Java 200 it(own vs. third-party libraries).
[26) v v v v v Agnostic o Time regression to predict
vulnerabilities from NVD logs, but
ol v v v 7 | AgrEE 5 the models lack data from the
[20] a a a F Agnostic 5 security domain

20/34

https://upload.wikimedia.org/wikipedia/commons/f/f8/Wallpapersden.com_anonymous-hacker-working_1280x720.jpg

Security-relevant code metrics

Used in remote networks

Own-code size
20/34

[%2]
[}
‘=
e}
()
€
(<)
©
o
()
)
[
(]
>
Q
—
()
T
2
S
=
(S}
(<)
(7]

My favourite correlation

© < o o
0. 0 0. 0.
1
u

110
1.08 4
0.98 A

— - —

g d13dW UNoARy A

SH)JOM]aU aloWeal Ul pasn

0.96

-10

-20

50

40

30

20

10

My favourite metric A

Own-code size

20/34

[%2]
[}
‘=
e}
()
€
(<)
©
o
()
)
[
(]
>
Q
—
()
T
2
S
=
(S}
(<)
(7]

My favourite correlation

°
°
S ® ©w ¥ & o o ©
- S S S S S o o
— — — — — — o o
g dl3dW ajunoAey A

SH)JOM]aU aloWeal Ul pasn

-10

-20

50

40

30

20

10

My favourite metric A

Own-code size

20/34

0
(]
=
fras)
()
€
(<)
©
o
(]
)
<
(]
S
m
()
T
2
—_
=
(S}
(<]
wn

My favourite correlation

[()
‘% L o o o
ool S L) °
o Oy [00)
° (Y C)
o % » O,
> Y [] °
o ~.O o °
° o,
° []
°
o © ©o < o~ (=3 o] ©o
— [S] S [} =} [S] o o
— — — — — — o o

g dl3dW ajunoAey A

S)}J0M]aU a10Wal Ul pas)

-10

-20

50

40

30

20

10

My favourite metric A

Own-code size

20/34

Security-relevant code metrics

My favourite correlation

°
1.10 4 o
i ° o : o °
— oo ° o . °
(@) 1.08 ° * o o O ’.. °
° ()
E m = ° ﬂ‘. S o’?. ®e
[o 106 N el ——
= 5 NN L ops * .
@ o °
-nq—-" “E) 1.04 4 % "‘.. w"‘s‘f % oo
=) & o € o0 %, 0o e B o 0% 0
E] (X) S) 9, ° o O
[) S 1.021 - -
s & o oo, (19 '. ° :. °
°
= 2 aamd e ® . e®e :.o. o °
§e) $
% 0.98 °
= []
0.96 ,
-20 -10 0 10 20 30 40 50

My favourite metric A

Own-code size
20/34

Security-relevant code metrics

My favourite correlation

My favourite metric B

Used in remote networks

0.96

My favourite metric A

Own-code size
20/34

Security-relevant code metrics

My favourite correlation

[]

o 110 o o ' ;lne—oz
~ E o | S8
— @ &

S 60e03 S ool
g 1.081 ¢ 2

2 40003 2 4.0g03
= =@ H
q,; S 1063 i
= £ & 3

£ T e P L el
'G'J 2 am @g Time since lib. release Time since lib. release
(@] o
€ E s .
1000
S 1.02{s 0 —— Bl 4 —

= 2 £ e ® e o
[z>‘ 3 60003 S oo °
o— 1.001 5 6

2 40003 2 40e03
E

2 20003 3 20003
N 098¢ g
) W m W aw m am

Time since lib. release Time since lib. release
0.96 T T T t T T T T
-20 -10 0 10 20 30 40 50

My favourite metric A

Own-code size

20/34

Security-relevant code metrics

Small/Medium Large

L0e02 Local & SM_size Local &L size
8.0e-03
6.0e-03

4.0e-03

2.0e-03

1e207

1.0e-02
Remote network & SM_size Remote network & L_size

8.0e-03

6.0e-03

JIomiau 2j0Way

4.0e-03

Probability of CVE in own_code of g:a:v

2.0e-03

Used in remote networks

[} 1Q 2Q 3Q 1y 5Q0 1Q 2Q 3Q 1y 5Q

Time from release date of g:a:v to publication date of CVE

Own-code size
20/34

On overfitting and rare events

My favourite metric B

My favourite correlation

Bo0a03{

Probability of CVE public.
2

W M A
Time since lib. release

-20 -10 0 10 20 30 40

My favourite metric A

50

21/34

On overfitting and rare events

My favourite correlation

1.10
°
1.08
o
o 106 °
E °
£
1.04 L4
.g L] o
§ 3
1.02
& .
> L]
= 1.00
0.98 °
L]
0.96
-20 -10 0 10 20 30 40 50

My favourite metric A

21/34

n
e}
c
()
>
(]
()
—
e
©
[
(1]
N
c
=]
=
=
—
()
>
()
c
(@]

My favourite correlation

AR \

< N o

1.06
0:
0:

5}

— — —

g du3dW junoney A

\\\

©
3
o

-10 0 10 20 30 40 50

-20

My favourite metric A

21/34

On overfitting and rare events

» Count each CVE as one data point
» Discriminate per development environment

» Discriminate per library type

21/34

On overfitting and rare events

v

Count each CVE as one data point

v

Discriminate per development environment

v

Discriminate per library type

Clusterisation mustn’t be too thin

v

- few divisions per metric-dimension
- few metric-dimensions

21/34

Enough!

Gimme results

Here ya go

Probability of CVE in own_code of g:a:v

1.0e-02

8.0e-03

6.0e-03

4.0e-03

2.0e-03

1.0e-02

8.0e-03

6.0e-03

4.0e-03

2.0e-03

Small/Medium | Large
Local & SM_size Local &L size
Remote network & SM _size Remote network &L size |
3
3
f=t
ki
3
2
10 20 3@ 1Y 500 10 20 3@ 1Y 5Q

Time from release date of g:a:v to publication date of CVE

22/34

Here ya go

Q1
Q2

Small/Medium | Large

1.0e-02 Local & SM_size Local &L size
8.0e-03
6.0e-:03

4.0e-03

2.0e-03

12207

Eoes02 Remote network & SM_size Remote network & L size

8.0e-03

6.0e-03

Probability of CVE in own_code of g:a:v
HIOMIBU 330wy

4.0e-03

2.0e-03

0
0 1Q 20 3Q 1y 5Q 0 1Q 2Q 3Q 1y 5Q

Time from release date of g:a:v to publication date of CVE

Pr(vuln.) as function of time

Pr(vuln.) as function of software metrics

22/34

Survival analysis on library update

org.redisson:redisson

(7
Hars
1
¥
fd d [d)
4.1.79 4.1.81_4.1.82 io.netty:netty-codec
w22 Aug22 "sep22 " oct22 "Nov'22 "Dec22 " time

22/34

Survival analysis on library update

org.redisson:redisson

io.netty:netty-codec

w22 Aug22 "sep22 " oct22 "Nov'22 "Dec'22 " time

22/34

Survival analysis on library update

Na
AL B means that we change from dependency e

Yy
04 to £ in t time units counting from ¢y (“today”). %2

4179,

> L4 was released onta < to, {p Ontp < to, taXtp —

T T T
Aug'22 Sep'22 Oct'22

22/34

Survival analysis on library update

Na
A% B means that we change from dependency e

Yy
04 to £ in t time units counting from ¢y (“today”). %2

4179,

> L4 was released onta < to, {p Ontp < to, taXtp —

T T T
Aug'22 Sep'22 Oct'22

Q: Pra p(t) = probability of vuln. of A Y B as a function of ¢

22/34

Survival analysis on library update

Na
A% B means that we change from dependency e

Yy
04 to £ in t time units counting from ¢y (“today”). 7K

> L4 was released onta < to, {p Ontp < to, taXtp . e o

Q: Pra p(t) = probability of vuln. of A Y B as a function of ¢
A: Pryp(t)=1—SFa(t+Ata) CDFp(t+ Atp) where Aty = [tz — tof

22/34

Survival analysis on library update

Na
A% B means that we change from dependency e

Yy
04 to £ in t time units counting from ¢y (“today”). 7K

> L4 was released onta < to, {p Ontp < to, taXtp . e o

Q: Pra p(t) = probability of vuln. of A Y B as a function of ¢

A: Pryp(t)=1—SFa(t+ Ata) CDFp(t+ Atg) where Aty = |tz — to|
vuln. in £4 before change vuln. in ¢ after change

22/34

Survival analysis on library update

AL B means that we change from dependency
04 to £ in t time units counting from ¢y (“today”).

> L4 was released onta < to, {p Ontp < to, taXtp . e o

Q: Pra p(t) = probability of vuln. of A Y B as a function of ¢

A: Pryp(t)=1—SFa(t+ Ata) CDFp(t+ Atg) where Aty = |tz — to|
vuln. in £4 before change vuln. in ¢ after change

RO N RO N
Time from release date of g:a:v to publication date of CVE

22/34

Survival analysis on library update

AL B means that we change from dependency
04 to £ in t time units counting from ¢y (“today”).

> L4 was released onta < to, {p Ontp < to, taXtp . e o

Q: Pra p(t) = probability of vuln. of A Y B as a function of ¢
A: Pryp(t)=1—SFa(t+Ata) CDFp(t+ Atp) where Aty = [tz — tof

o0z Local & ¥ sae Lo & size Prob. of vuln. when changing s = £ at time T
o f— m—
= o,
5 “ == 1-SFsCDFg
os
P
e . o TSt
H 1y relnsea
0 e

o 10)
Time T of change 1415

o 2 30 I s 0 20 30 1Y s ta =184 days
Time from release date of v t publicaton aate of CVE
tp = 21 days 22/34

Survival analysis on library update

AL B means that we change from dependency
04 to £ in t time units counting from ¢y (“today”).

> ¢4 was released onta < to, € ONntp < to,ta X tip

T T T
Jul'22 Aug'22 Sep'22 Oct'22

Q: Pra p(t) = probability of vuln. of A Y B as a function of ¢

A: Pryp(t)=1—SF4(t+ Ats) CDFp(t + Atp)

Prob. of vuln. when changing £, - £s at time T Lz Loca & v sze
10 SFa () 8003
CoFs 1)
= 1-SFsCDFg, 60603
08 L
freteased §
s B S, -
fpreleased 5 H
dyeago £ o
04 B 10
s =
s >
s 3 s
00 2
1Q 2Q 30 v & e
Time T of change t4 -+
ta = 17 days R O R R
Time from release date of v t publicaton aate of CVE
tp = 85 days

where Aty = [t — to|

Prob. of vuln. when changing £4 - s at time T

—_—] %o
COFs (s)

— 1-SF.-COFs
1 released
T84 days ago
15 released
21 days ago

o 10)

Time T of change £4 15
ta = 184 days
tp = 21 days 22/34

Survival analysis on library update

AL B means that we change from dependency
04 to £ in t time units counting from ¢y (“today”).

> ¢4 was released onta < to, € ONntp < to,ta X tip

T T
Jul'22 Aug'22 Sep'22

Q: Pra p(t) = probability of vuln. of A Y B as a function of ¢

A: Pryp(t)=1—SF4(t+ Ats) CDFp(t + Atp)

Prob. of vuln. when changing 4 - fs at time T 1.000
St (1)
o w0975 global min:
= 1-5Fa-COFg best moment to change,
0.950 avoiding peaks of vuln.
fle vuln. from batf lbraries wvuln. likely
1y released 0.925 A likely to hit 4
85 days ago to hit £
0.900
0.875
R 20 B g
Time T of change £, -+ 15 0.850] I ; T
t4 = 17 days 0 10' 2Q 3Q v
tp = 85 days Time T of change £, - g

where Aty = [t — to|

T
Oct'22

Prob. of vuln. when changing £4 - s at time T

——

o 10)

Time T of change 1415

ta = 184 days
tp = 21 days

SEa ()
COFs (s)
— 1-SF.-COFs

1 released
T84 days ago

15 released
21 days ago

22/34

Survival analysis on library update

AL B means that we change from dependency
04 to £ in t time units counting from ¢y (“today”).

> ¢4 was released onta < to, € ONntp < to,ta X tip

T T T
Jul'22 Aug'22 Sep'22 Oct'22

Q: Pra p(t) = probability of vuln. of A Y B as a function of ¢

A: Pryp(t)=1—SF4(t+ Ats) CDFp(t + Atp)

Prob. of vuln. when changing £, - £s at time T 10
10)
COFs)
— 1-shC
08 0.8
f refessed
06 19/ Gaye ag0
1y etessea
85 days ago 0.6
04
02
0.4
00
0 B EY R
Time T of change £+ 02
t4 = 17 days
tp = 85 days 00

where Aty = [t — to|

Prob. of vuln. when changing £4 - s at time T

—_—] %o
COFs (s)
— 1-SF.-COFs

1 released
T84 days ago

15 released
21 days ago

o 10)

Time T of change £4 15
ta = 184 days
tp = 21 days 22/34

Survival analysis on library update

AL B means that we change from dependency
04 to £ in t time units counting from ¢y (“today”).

> ¢4 was released onta < to, € ONntp < to,ta X tip

A: Pryp(t)=1—SF4(t+ Ats) CDFp(t + Atp)

Prob. of vuln. when changing £, - £s at time T 10
19)
COFs)
— 1-shC
08| 0.8
f refessed
o 19/ Gaye ag0
1y etessea
85 days ago 0.6
04
02
0.4
0.0 S——————
0 1Q 29 30 v
Time T of change £+ 02
t4 = 17 days
tp = 85 days 00

T T
Jul'22 Aug'22 Sep'22

Q: Pra p(t) = probability of vuln. of A Y B as a function of ¢

where Aty = [t — to|

T
Oct'22

Prob. of vuln. when changing £4 - s at time T

——

o 10)

Time T of change 1415

ta = 184 days
tp = 21 days

SEa ()
COFs (s)
— 1-SF.-COFs

1 released
T84 days ago

15 released
21 days ago

22/34

Survival analysis on library update

AL B means that we change from dependency
04 to £ in t time units counting from ¢y (“today”).

> L4 was released onta < to, {p Ontp < to, taXtp . e o

Q: Pra p(t) = probability of vuln. of A Y B as a function of ¢

A: Pryp(t)=1—SFa(t+Ata) CDFp(t+ Atp) where Aty = [tz — tof

Prob. of vuln. when changing £, - £g at time T 1.0 Prob. of vuln. when changing £4 - g at time T
19) wff————————) sow
COF5 (ts) i CDF5 (ts)
=—1-5F-C s == 1-5Fs-CDFs
0.8 .8 08
f refessed 1, relessed
o 19/ Gaye ag0 od 184 days 200
1y etessea s 1 releasea
o & days a0 . s A days 090
02 02
0.4
0.0 S—————— o
o 10 20 30 v ° 10 - -
Time T of change £4 15 02 _ — — = TiméTofchange Ls~1ls
ta = 17 days ta = 184 days
tp = 85 days 00 tp = 21 days 22/34

Vulnerabilities from any dependency

Q: Pr4 p(t) = probability of vuln. in £4 or {5 before ¢

23/34

Vulnerabilities from any dependency

Q: Pr4 p(t) = probability of vuln. in £4 or {5 before ¢
A: Prap(t) =Pr(min(fa,¢p) <t)=1—(1—Pra(t))(1 —Prg(t))

23/34

Vulnerabilities from any dependency

Q: Pr4 p(t) = probability of vuln. in £4 or {5 before ¢
A: Prap(t) =Pr(min(fa,lp) <t)=1—(1—Pra(t))(1 —Prg(t))

L4 lp

Vulnerabilities from any dependency

Q: Pra p(t) = probability of vuln. in £4 or ¢5 before ¢
A: Prap(t) =Pr(min({a,lp) <t)=1—(1—Pra(t))(1—Prg(t))

15: Large
\

la B

Piiii

e e s et o s st 23/34

Vulnerabilities from any dependency

Q: Pra p(t) = probability of vuln. in £4 or ¢5 before ¢
A: Prap(t) =Pr(min({a,lp) <t)=1—(1—Pra(t))(1—Prg(t))

11111

15: Large
\

Piiii

5
i
vors
il L4 (B
PDFAvs H
& 20003 g
0008 , : g
0006) g o ST = =
4 days ago 3 3
0004 g
0002 ta = 123 days & e
0000 tp = 14 days o

e e s et o s st 23/34

Vulnerabilities from any dependency

Q: Pra p(t) = probability of vuln. in £4 or ¢5 before ¢
A: Prap(t) =Pr(min({a,lp) <t)=1—(1—Pra(t))(1—Prg(t))

12 SmalliMed Probability of vuln. from £, or £ in time
c PoF,

Léeloz
0.014 PDFa

14002 0012

b released
12e02 10 28 days ago
QD 1 releasec
1.0e:02 Eo}day="a00
500 60’ days ao
80603 os
ta = 28 days
coe0s 0002 A 3
o000 | JtB = 60 days
40803, 0 10 20 30 v
2.0e-03 time
1g: Large
\L 0
Probability of vuln. from £, or £ in time, 80c03
§ o / ;
0.010 PDFy 5 e A B
— POFuvs H
2 20003
0008 H
1y release d H
123 doys ago £
o0 — g — — S
14 days ago 5 soeas
o Heeo
0.002 ta = 123 days & aseos
0000 tp = 14 days o
0 20 % F I T T R R 23/34

time ‘Time from release date of g:a:v to publication date of CVE

Vulnerabilities from any dependency

Q: Pra p(t) = probability of vuln. in £4 or ¢5 before ¢
A: Prap(t) =Pr(min({a,lp) <t)=1—(1—Pra(t))(1—Prg(t))

12 SmalliMed Probability of vuln. from £, or £ in time

Léeloz

o014
14002 o012
12e.02 QGO
0008
10002
0008
80603 s
| ta = 28 days
2 H6oe0s 0002 A 3
. 0000 JtB = 60 days
H - ; ; - v
$x 40503, o 1Q 20 3Q 1
7, L
1g: Large -
\ . Lo Lo
Probability of vuln. from £, or £ in time,
1.4e-02
o 1.2e-02
o
o010 ors
(= POAve 1.0e-02
0.008 8.0e-03
 released
123 days ago 6000
0006 1 released
14 days ago 4.0e:03
0.004 2.0e-03
0.002 ta = 123 days
0000 tp = 14 days
0 E) E)

23/34

Vulnerabilities from any depen

Q: Pra p(t) = probability of vuln. in £4 or ¢5 before ¢
A: Prap(t) =Pr(min({a,lp) <t)=1—(1—Pra(t))(1—Prg(t))
/V_/w Probability of vuln. from £, or £g in time .

15: Large
\

5o ‘gléeo?

001 Por,
— por,
14002 o
" b released
R2ecz oo 28 days ago
0008 1 released
" 1.0e-02 A P
50 008 & Gove 50
50003)
p t4 = 28 days
20 (Y6003 0.002 A y!
. o000 | JtB = 60 days
- 4.0e-03, T 7 T 7
B o 10 0) i
2| {20e0s iz

0.010

0.008

0.006

0.004

0.002

0.000

ta = 123 days
tp = 14 days

Nice for 2

dependencies...

1.4e-02

1.2e-02

1.0e-02
8.0e-03

6.0e-03
4.0e-03
2.0e-03

23/34

Vulnerabilities from any depen

Q: Pra p(t) = probability of vuln. in £4 or ¢5 before ¢
A: Prap(t) =Pr(min({a,lp) <t)=1—(1—Pra(t))(1—Prg(t))
/V_/w Probability of vuln. from £, or £g in time .

15: Large
\

5o ‘gléeo?

001 Por,
— por,
14002 o
" b released
R2ecz oo 28 days ago
0008 1 released
s LoD sﬂﬂ days ago
'10 0.006 ys ag
50003)
p t4 = 28 days
20 (Y6003 0.002 A y!
. o000 | JtB = 60 days
- 4.0e-03, T 7 T 7
B o 10 0) i
2| {20e0s iz

0.010

0.008

0.006

0.004

0.002

0.000

ta = 123 days
tp = 14 days

Nice for 2
dependencies...

| have 2000

1.4e-02

1.2e-02

1.0e-02
8.0e-03

6.0e-03
4.0e-03
2.0e-03

23/34

Vulnerabilities from any dependency

Q: Pra p(t) = probability of vuln. in £4 or ¢5 before ¢
A: Prap(t) =Pr(min(fa,lp) <t) =1— (1 —Pra(t))(1 — Prp(t))
/V\/w Probability of vuln. from £, or £5 in time

5o ‘gléeo? Lot}

oo vors
— ror
14002 ooz
w
12002 o010 B dars s
0.008 1 released
o [l o Ly
Nice for 2
2 oo 5002 t4 = 28 days
: ol =" Ntp=60days | dependencies...
o 408, 0 10 20 3Q v
%
N /) * | {20e0s i
Lg: Large N
\ y L5 L, I have 2000
g : TDTs!
Probability of vuln. from £4 or £g in time, .
1.4e-02
::i: 1.2¢:02
0010 — PDFuvs 1.0e-02
0.008 8.0e-03
123 days ago 6.0e-03
0.006 1y released
14 days ago !
0.004 2.0e-03
0002 t4 = 123 days
0000 tp = 14 days
o B3 £

23/34

Forecast model

3. Forecast model

Time Dependency Trees

los —» o9 10 - £11

3.0+ 3.3 Y5.0.0 > Y5.0.1 > Y5.84
| =" '

22.0 > 22.1 >W2.2

CVE root-lib PDFs

Conclusions

4. Conclusions

Some things done

» Time Dependency Trees

26/34

Some things done

» Time Dependency Trees

- Aggregate dependency and code-evolution data

26/34

Some things done

» Time Dependency Trees

- Aggregate dependency and code-evolution data
- Minimal representation with nice properties

26/34

Some things done

» Time Dependency Trees

- Aggregate dependency and code-evolution data
- Minimal representation with nice properties
- Framework for large-scale project analysis

26/34

Some things done

» Time Dependency Trees

- Aggregate dependency and code-evolution data
- Minimal representation with nice properties
- Framework for large-scale project analysis

» Probability of vulnerabilities as a function of time

26/34

Some things done

» Time Dependency Trees

- Aggregate dependency and code-evolution data
- Minimal representation with nice properties
- Framework for large-scale project analysis

» Probability of vulnerabilities as a function of time

- Express time from library release to CVE publication

26/34

Some things done

» Time Dependency Trees

- Aggregate dependency and code-evolution data
- Minimal representation with nice properties
- Framework for large-scale project analysis

» Probability of vulnerabilities as a function of time

- Express time from library release to CVE publication
- Discriminate per type of library (security-relevant props.)

26/34

Some things done

» Time Dependency Trees

- Aggregate dependency and code-evolution data
- Minimal representation with nice properties
- Framework for large-scale project analysis

» Probability of vulnerabilities as a function of time

- Express time from library release to CVE publication
- Discriminate per type of library (security-relevant props.)
- Base information for probability forecasting

26/34

Some things done

27/34

Some things done

to be

27/34

Some things done

to be

» Other metrics to clusterise libraries for PDF-fitting

27/34

Some things done

to be

» Other metrics to clusterise libraries for PDF-fitting

» Validate in other languages (all Java so far)

27/34

Some things done

to be

» Other metrics to clusterise libraries for PDF-fitting
» Validate in other languages (all Java so far)

» SPoOF detection—across versions—in Java/Maven

27/34

Some things done

to be

v

Other metrics to clusterise libraries for PDF-fitting

v

Validate in other languages (all Java so far)

SPoF detection—across versions—in Java/Maven

v

v

c-chains polution by CVE

27/34

Questions?

References i

@ J. Akram and P. Luo.
SQVDT: A scalable quantitative vulnerability detection technique for source
code security assessment.
Software: Practice and Experience, 51(2):294-318, 2021.

@ M. Alohaly and H. Takabi.
When do changes induce software vulnerabilities?
In CIC, pages 59-66. |IEEE, 2017.
@ H. Alves, B. Fonseca, and N. Antunes.
Software metrics and security vulnerabilities: Dataset and exploratory study.
In EDCC, pages 37-44. |IEEE, 2016.

@ Z. Bilgin, M. A. Ersoy, E. U. Soykan, E. Tomur, P. Comak, and L. Karacay.
Vulnerability prediction from source code using machine learning.
IEEE Access, 8:150672-15068L, 2020.

@ A. Bosu, J. C. Carver, M. Hafiz, P. Hilley, and D. Janni.
Identifying the characteristics of vulnerable code changes: An empirical study.
In FSE, pages 257-268. ACM, 2014.

28/34

References ii

E

[

S. Chakraborty, R. Krishna, Y. Ding, and B. Ray.
Deep learning based vulnerability detection: Are we there yet.
IEEE Transactions on Software Engineering, 48(9):3280-3296, 2021.

I. Chowdhury and M. Zulkernine.

Using complexity, coupling, and cohesion metrics as early indicators of
vulnerabilities.

Journal of Systems Architecture, 57(3):294-313, 2011.

S. Ganesh, T. Ohlsson, and F. Palma.
Predicting security vulnerabilities using source code metrics.
In SweDS, pages 1-7. IEEE, 2021.

S. Kim, S. Woo, H. Lee, and H. Oh.

VUDDY: A scalable approach for vulnerable code clone discovery.
In SP, pages 595-614. IEEE, 2017.

D. Last.

Forecasting zero-day vulnerabilities.

In CISRC, pages 1-4. ACM, 2016.

29/34

References iii

[

E

H. Li, H. Kwon, J. Kwon, and H. Lee.
A scalable approach for vulnerability discovery based on security patches.
In ATIS, volume 490 of CCIS, pages 109-122. Springer, 2014.

Q. Li,). Song, D. Tan, H. Wang, and J. Liu.

PDGraph: A large-scale empirical study on project dependency of security
vulnerabilities.

In DSN, pages 161-173. IEEE, 2021.

A. Meneely, H. Srinivasan, A. Musa, A. R. Tejeda, M. Mokary, and B. Spates.

When a patch goes bad: Exploring the properties of vulnerability-contributing
commits.

In ESEM, pages 65-74. IEEE, 2013.

A. Meneely and L. Williams.
Secure open source collaboration: An empirical study of Linus’ law.
In CCS, pages 453—-462. ACM, 20009.

30/34

References iv

@ A. Meneely and L. Williams.
Strengthening the empirical analysis of the relationship between Linus’ law and
software security.
In ESEM. ACM, 2010.

@ Y. Pang, X. Xue, and A. S. Namin.
Predicting vulnerable software components through N-gram analysis and
statistical feature selection.
In ICMLA, pages 543-548. IEEE, 2015.

@ I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci.
Vulnerable open source dependencies: Counting those that matter.
In ESEM. ACM, 2018.
@ I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci.
VulngReal: A methodology for counting actually vulnerable dependencies.
IEEE Transactions on Software Engineering, 48(5):1592-1609, 2022.

31/34

References v

@ G. A. A. Prana, A. Sharma, L. K. Shar, D. Foo, A. E. Santosa, A. Sharma, and D. Lo.
Out of sight, out of mind? how vulnerable dependencies affect open-source
projects.

Empirical Software Engineering, 26(4), 2021.

@ Y. Roumani, J. K. Nwankpa, and Y. F. Roumani.
Time series modeling of vulnerabilities.
Computers & Security, 51:32-40, 2015.

@ N. Shahmehri, A. Mammar, E. Montes de Oca, D. Byers, A. Cavalli, S. Ardi, and
W. Jimenez.
An advanced approach for modeling and detecting software vulnerabilities.
Information and Software Technology, 54(9):997-1013, 2012.

@ Y. Shin, A. Meneely, L. Williams, and J. A. Osborne.
Evaluating complexity, code churn, and developer activity metrics as indicators
of software vulnerabilities.
IEEE Transactions on Software Engineering, 37(6):772-787, 2011.

32/34

References vi

@ K. Z. Sultana, V. Anu, and T-Y. Chong.
Using software metrics for predicting vulnerable classes and methods in Java
projects: A machine learning approach.
Journal of Software: Evolution and Process, 33(3), 2021.

@ K. Z. Sultana, A. Deo, and B. J. Williams.
Correlation analysis among Java nano-patterns and software vulnerabilities.
In HASE, pages 69-76. IEEE, 2017.

@ K. Z. Sultana and B. J. Williams.
Evaluating micro patterns and software metrics in vulnerability prediction.
In SoftwareMining, pages 40-47. |IEEE, 2017.

@ E. Yasasin, J. Prester, G. Wagner, and G. Schryen.
Forecasting IT security vulnerabilities - an empirical analysis.
Computers & Security, 88, 2020.

33/34

Predicting Security Attacks in FOSS

Why you want it and one way to do it

C.E. Budde R.Paramitha F Massacci
Universita di Trento (IT) & Vrije Universiteit (NL)

VulngCast 2023 FIRST Technical Colloquium

9" ProSXED

AssureM0SS

	Introduction
	Background
	Forecast model
	TDTs
	PDFs

	Conclusions

