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Outta scopes

1. Unpublished/Undetected vulnerabilities:
- we study publication of CVEs;
- keep it high-level, no code analysis.

2. Probability of exploitation:
- we study publication of CVEs;
- ... but check the work of the EPSS!
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» ML & statistical analysis to correlate SE metrics to existent vulner-
abilities

» human-in-the-loop metrics, including VCS (#commits, seniority...)
» (a few) considerations of own and 3™ party dependencies

Q1 Pr(vuln.) as function of time

» time-regression models on CVE publications (= FinTech)
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Gap analysis

- Studies typically try to detect, not foretell vulnerabilities.
- The dependency tree is seldom analysed (own code only).

- The rare-event nature of vulnerabilities is disregarded.

We propose white-box model(s) to fill these gaps
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SPoF in time and dependencies

My personal project uses ¢
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R2.0 PR s > 22.2

Should | downgrade to £y ¢ or upgrade to #7117
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Theoretical
- Minimal graph representation (no lib-version repetition)
- Canonical for library £ and time span T'

- Natural lifting of dependency trees to time

Practical

- Time-indexing D,(¢) yields the dep. tree attimet € T

- Library-slicing DT(€)|d yields all instances of
dependency d during time T

- Reachability analysis can spot single-points-of-failure

- Can measure health/risk of development environment
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Forecast model

3. Forecast model

Time Dependency Trees
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Security-relevant code metrics

#{CVEs from the NVD}
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Security-relevant code metrics

Used in remote networks

CVEs with the 'Java' keyword

4000
-~
o
; 3000
[}
d=
=]
£
e
w2000
n
w
>
O
o
H#*

1000

199
od 6 11
Physical Local Adjacent Network
Attack Vector

20/34



Security-relevant code metrics
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Security-relevant code metrics

x Goal Data Method Approach Projects/Libs.
s
o ©
= & @ & F © & & & AH SA ML  language # Purport
[4) v v v v 3 Find vulnerabilities regardless of
N existent logs such as CVEs
el v v v v v pHP 3 (although CWEs may be used)
[el v v v v v v aa 4 This includes formal methods and
5] v v v v v C/Cw, PHP, Java, )5, SQL 10 Static/dynamic code analysis,
[n] 's v v 's v C 3 Detect known vulnerabilities (and
i | v v v v c . their correlation to developer
activity metrics) from VCS
sl v v v v v o C.ASM 3 only—eg. commit churn, peer
[14] v v v v v v C, ASM 1 comments, etc.
(6] v v v v v oo 3
(8] v v v v v Java 7 Detect known vulnerabilities (and
[23] v v v v v v v Java 4 their correlation to code metrics)
from code only—eg. number of
d v vV v v Java 3 classes, code cloning, cyclomatic
[25] v v v v v Java 5 complexity, etc.
[1] v v v v v C 7
) v v vV v v v ocles >150k  Detect known vulnerabilities (and
[o] v v v v v v Clow g  their corr. to code and developer
activity metrics) from both code
bl v v v v v v C/ch 5 and VCS, but without considering
7 v v v v v v v v e Java 1 the effect of dependencies in
2] v v v v v v v o 5 | U e
[18] v v v v v v v Java 500  Detect known vulnerabilities using
il I v v v < [ 2300kt o e
hol v v o v v v v v v Java, Ruby, Python 450 offending code to help correcting
7] 's v v v v v Java 200  it(own vs. third-party libraries).
[26) v v v v v Agnostic o Time regression to predict
vulnerabilities from NVD logs, but
ol v v v 7 | AgrEE 5 the models lack data from the
[20] a a a F Agnostic 5 security domain
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Security-relevant code metrics

Used in remote networks

Own-code size
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Security-relevant code metrics
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Security-relevant code metrics
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Security-relevant code metrics
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Security-relevant code metrics
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On overfitting and rare events

My favourite metric B

My favourite correlation
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On overfitting and rare events

» Count each CVE as one data point
» Discriminate per development environment

» Discriminate per library type
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On overfitting and rare events

v

Count each CVE as one data point

v

Discriminate per development environment

v

Discriminate per library type

Clusterisation mustn’t be too thin

v

- few divisions per metric-dimension
- few metric-dimensions
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Enough!

Gimme results



Here ya go
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Here ya go
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Survival analysis on library update
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Vulnerabilities from any dependency

Q: Pr4 p(t) = probability of vuln. in £4 or {5 before ¢

23/34



Vulnerabilities from any dependency

Q: Pr4 p(t) = probability of vuln. in £4 or {5 before ¢
A: Prap(t) =Pr(min(fa,¢p) <t)=1—(1—Pra(t))(1 —Prg(t))

23/34
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3. Forecast model

Time Dependency Trees

los —» o9 10 - £11

3.0+ 3.3 Y5.0.0 > Y5.0.1 > Y5.84
| =" '

22.0 > 22.1 >W2.2

CVE root-lib PDFs



Conclusions

4. Conclusions



Some things done

» Time Dependency Trees

26/34



Some things done

» Time Dependency Trees

- Aggregate dependency and code-evolution data

26/34



Some things done

» Time Dependency Trees

- Aggregate dependency and code-evolution data
- Minimal representation with nice properties

26/34



Some things done

» Time Dependency Trees

- Aggregate dependency and code-evolution data
- Minimal representation with nice properties
- Framework for large-scale project analysis

26/34



Some things done

» Time Dependency Trees

- Aggregate dependency and code-evolution data
- Minimal representation with nice properties
- Framework for large-scale project analysis

» Probability of vulnerabilities as a function of time

26/34



Some things done

» Time Dependency Trees

- Aggregate dependency and code-evolution data
- Minimal representation with nice properties
- Framework for large-scale project analysis

» Probability of vulnerabilities as a function of time

- Express time from library release to CVE publication

26/34



Some things done

» Time Dependency Trees

- Aggregate dependency and code-evolution data
- Minimal representation with nice properties
- Framework for large-scale project analysis

» Probability of vulnerabilities as a function of time

- Express time from library release to CVE publication
- Discriminate per type of library (security-relevant props.)

26/34



Some things done

» Time Dependency Trees

- Aggregate dependency and code-evolution data
- Minimal representation with nice properties
- Framework for large-scale project analysis

» Probability of vulnerabilities as a function of time

- Express time from library release to CVE publication
- Discriminate per type of library (security-relevant props.)
- Base information for probability forecasting

26/34



Some things done

27/34



Some things done

to be

27/34



Some things done

to be

» Other metrics to clusterise libraries for PDF-fitting

27/34



Some things done

to be

» Other metrics to clusterise libraries for PDF-fitting

» Validate in other languages (all Java so far)

27/34



Some things done

to be

» Other metrics to clusterise libraries for PDF-fitting
» Validate in other languages (all Java so far)

» SPoOF detection—across versions—in Java/Maven

27/34



Some things done

to be

v

Other metrics to clusterise libraries for PDF-fitting

v

Validate in other languages (all Java so far)

SPoF detection—across versions—in Java/Maven

v

v

c-chains polution by CVE

27/34



Questions?



References i

@ J. Akram and P. Luo.
SQVDT: A scalable quantitative vulnerability detection technique for source
code security assessment.
Software: Practice and Experience, 51(2):294-318, 2021.

@ M. Alohaly and H. Takabi.
When do changes induce software vulnerabilities?
In CIC, pages 59-66. |IEEE, 2017.
@ H. Alves, B. Fonseca, and N. Antunes.
Software metrics and security vulnerabilities: Dataset and exploratory study.
In EDCC, pages 37-44. |IEEE, 2016.

@ Z. Bilgin, M. A. Ersoy, E. U. Soykan, E. Tomur, P. Comak, and L. Karacay.
Vulnerability prediction from source code using machine learning.
IEEE Access, 8:150672-15068L, 2020.

@ A. Bosu, J. C. Carver, M. Hafiz, P. Hilley, and D. Janni.
Identifying the characteristics of vulnerable code changes: An empirical study.
In FSE, pages 257-268. ACM, 2014.

28/34



References ii

E

[

S. Chakraborty, R. Krishna, Y. Ding, and B. Ray.
Deep learning based vulnerability detection: Are we there yet.
IEEE Transactions on Software Engineering, 48(9):3280-3296, 2021.

I. Chowdhury and M. Zulkernine.

Using complexity, coupling, and cohesion metrics as early indicators of
vulnerabilities.

Journal of Systems Architecture, 57(3):294-313, 2011.

S. Ganesh, T. Ohlsson, and F. Palma.
Predicting security vulnerabilities using source code metrics.
In SweDS, pages 1-7. IEEE, 2021.

S. Kim, S. Woo, H. Lee, and H. Oh.

VUDDY: A scalable approach for vulnerable code clone discovery.
In SP, pages 595-614. IEEE, 2017.

D. Last.

Forecasting zero-day vulnerabilities.

In CISRC, pages 1-4. ACM, 2016.

29/34



References iii

[

E

H. Li, H. Kwon, J. Kwon, and H. Lee.
A scalable approach for vulnerability discovery based on security patches.
In ATIS, volume 490 of CCIS, pages 109-122. Springer, 2014.

Q. Li, ). Song, D. Tan, H. Wang, and J. Liu.

PDGraph: A large-scale empirical study on project dependency of security
vulnerabilities.

In DSN, pages 161-173. IEEE, 2021.

A. Meneely, H. Srinivasan, A. Musa, A. R. Tejeda, M. Mokary, and B. Spates.

When a patch goes bad: Exploring the properties of vulnerability-contributing
commits.

In ESEM, pages 65-74. IEEE, 2013.

A. Meneely and L. Williams.
Secure open source collaboration: An empirical study of Linus’ law.
In CCS, pages 453—-462. ACM, 20009.

30/34



References iv

@ A. Meneely and L. Williams.
Strengthening the empirical analysis of the relationship between Linus’ law and
software security.
In ESEM. ACM, 2010.

@ Y. Pang, X. Xue, and A. S. Namin.
Predicting vulnerable software components through N-gram analysis and
statistical feature selection.
In ICMLA, pages 543-548. IEEE, 2015.

@ I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci.
Vulnerable open source dependencies: Counting those that matter.
In ESEM. ACM, 2018.
@ I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci.
VulngReal: A methodology for counting actually vulnerable dependencies.
IEEE Transactions on Software Engineering, 48(5):1592-1609, 2022.

31/34



References v

@ G. A. A. Prana, A. Sharma, L. K. Shar, D. Foo, A. E. Santosa, A. Sharma, and D. Lo.
Out of sight, out of mind? how vulnerable dependencies affect open-source
projects.

Empirical Software Engineering, 26(4), 2021.

@ Y. Roumani, J. K. Nwankpa, and Y. F. Roumani.
Time series modeling of vulnerabilities.
Computers & Security, 51:32-40, 2015.

@ N. Shahmehri, A. Mammar, E. Montes de Oca, D. Byers, A. Cavalli, S. Ardi, and
W. Jimenez.
An advanced approach for modeling and detecting software vulnerabilities.
Information and Software Technology, 54(9):997-1013, 2012.

@ Y. Shin, A. Meneely, L. Williams, and J. A. Osborne.
Evaluating complexity, code churn, and developer activity metrics as indicators
of software vulnerabilities.
IEEE Transactions on Software Engineering, 37(6):772-787, 2011.

32/34



References vi

@ K. Z. Sultana, V. Anu, and T-Y. Chong.
Using software metrics for predicting vulnerable classes and methods in Java
projects: A machine learning approach.
Journal of Software: Evolution and Process, 33(3), 2021.

@ K. Z. Sultana, A. Deo, and B. J. Williams.
Correlation analysis among Java nano-patterns and software vulnerabilities.
In HASE, pages 69-76. IEEE, 2017.

@ K. Z. Sultana and B. J. Williams.
Evaluating micro patterns and software metrics in vulnerability prediction.
In SoftwareMining, pages 40-47. |IEEE, 2017.

@ E. Yasasin, J. Prester, G. Wagner, and G. Schryen.
Forecasting IT security vulnerabilities - an empirical analysis.
Computers & Security, 88, 2020.

33/34



Predicting Security Attacks in FOSS

Why you want it and one way to do it

C.E. Budde R.Paramitha F Massacci
Universita di Trento (IT) & Vrije Universiteit (NL)

VulngCast 2023 FIRST Technical Colloquium

9" ProSXED

AssureM0SS




	Introduction
	Background
	Forecast model
	TDTs
	PDFs

	Conclusions

