
Predicting Security Attacks in FOSS
Why you want it and one way to do it

C.E. Budde R. Paramitha F. Massacci
Università di Trento (IT) & Vrije Universiteit (NL)

Vuln4Cast 2023 FIRST Technical Colloquium

Talk overview

1. Introduction

2. Background

3. Forecast model

4. Conclusions

Introduction

1. Introduction

2. Background

3. Forecast model

4. Conclusions

The myth of the bleeding edge
© Carpenter Brut

4/34

https://carpenterbrut.bandcamp.com/
https://www.howtogeek.com/686687/why-you-should-update-all-your-software/#you-don-t-always-need-the-latest-versions

The myth of the bleeding edge

© loonylabs

4/34

https://www.howtogeek.com/686687/why-you-should-update-all-your-software/#you-don-t-always-need-the-latest-versions
https://loonylabs.files.wordpress.com/2021/01/time-management.jpeg?w=1024

Some motivation (plz!)

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

ℓa
3.17.6

ℓa
3.17.7

ℓa
3.18.0

ℓa
3.18.1

ℓa
3.19.0

org.redisson:redisson

3.17.5

ℓa

4.1.80

ℓd
4.1.81

ℓd
4.1.82

ℓd
4.1.83

ℓd
4.1.84

ℓd
4.1.85

ℓd
4.1.86

ℓd
io.netty:netty-codec4.1.79

ℓd

5/34

Some motivation (plz!)

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

ℓa

3.17.6

ℓa

3.17.7

ℓa

3.18.0

ℓa

3.18.1

ℓa

3.19.0

org.redisson:redisson

3.17.5

ℓa

4.1.80

ℓd

4.1.81

ℓd

4.1.82

ℓd

4.1.83

ℓd

4.1.84

ℓd

4.1.85

ℓd
4.1.86

ℓd

io.netty:netty-codec4.1.79

ℓd

CVE-2022-41915 disclosed!

affects netty [4.1.83, 4.1.86)

5/34

Some motivation (plz!)

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

ℓa

3.17.6

ℓa

3.17.7

ℓa

3.18.0

ℓa

3.18.1

ℓa

3.19.0

org.redisson:redisson

3.17.5

ℓa

4.1.80

ℓd

4.1.81

ℓd

4.1.82

ℓd

4.1.83

ℓd

4.1.84

ℓd

4.1.85

ℓd
4.1.86

ℓd

io.netty:netty-codec4.1.79

ℓd

CVE-2022-41915 disclosed!

affects netty [4.1.83, 4.1.86)

5/34

Some motivation (plz!)

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

ℓa

3.17.6

ℓa

3.17.7

ℓa

3.18.0

ℓa

3.18.1

ℓa

3.19.0

org.redisson:redisson

3.17.5

ℓa

4.1.80

ℓd

4.1.81

ℓd

4.1.82

ℓd

4.1.83

ℓd

4.1.84

ℓd

4.1.85

ℓd
4.1.86

ℓd

io.netty:netty-codec4.1.79

ℓd

CVE-2022-41915 disclosed!

affects netty [4.1.83, 4.1.86)

Forced
MOVE

Wrong
MOVE

Correct
STAY

Correct
MOVE

Correct
STAY

5/34

Some motivation (plz!)

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

ℓa

3.17.6

ℓa

3.17.7

ℓa

3.18.0

ℓa

3.18.1

ℓa

3.19.0

org.redisson:redisson

3.17.5

ℓa

4.1.80

ℓd

4.1.81

ℓd

4.1.82

ℓd

4.1.83

ℓd

4.1.84

ℓd

4.1.85

ℓd
4.1.86

ℓd

io.netty:netty-codec4.1.79

ℓd

CVE-2022-41915 disclosed!

affects netty [4.1.83, 4.1.86)

Forced
MOVE

Wrong
MOVE

Correct
STAY

Correct
MOVE

Correct
STAY

Hindsight!

5/34

Some motivation (plz!)

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

ℓa

3.17.6

ℓa

3.17.7

ℓa

3.18.0

ℓa

3.18.1

ℓa

3.19.0

org.redisson:redisson

3.17.5

ℓa

4.1.80

ℓd

4.1.81

ℓd

4.1.82

ℓd

4.1.83

ℓd

4.1.84

ℓd

4.1.85

ℓd
4.1.86

ℓd

io.netty:netty-codec4.1.79

ℓd

CVE-2022-41915 disclosed!

affects netty [4.1.83, 4.1.86)

Forced
MOVE

Wrong
MOVE

Correct
STAY

Correct
MOVE

Correct
STAY

Hindsight!
© j4p4n

5/34

https://openclipart.org/detail/324072/flux-capacitator

Some motivation (plz!)

Developer perspective in time:

org.redisson:redisson

io.netty:netty-codec4.1.79

ℓd

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

5/34

Some motivation (plz!)

Developer perspective in time:

org.redisson:redisson

3.17.5

ℓa

io.netty:netty-codec4.1.79

ℓd

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

5/34

Some motivation (plz!)

Developer perspective in time:

org.redisson:redisson

3.17.5

ℓa

io.netty:netty-codec4.1.79

ℓd
4.1.80

ℓd

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

5/34

Some motivation (plz!)

Developer perspective in time:

org.redisson:redisson

3.17.5

ℓa ℓa
3.17.63.17.5

ℓa

io.netty:netty-codec4.1.79

ℓd
4.1.80

ℓd

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

5/34

Some motivation (plz!)

Developer perspective in time:

org.redisson:redisson

3.17.5

ℓa ℓa
3.17.63.17.5

ℓa

io.netty:netty-codec4.1.79

ℓd
4.1.80

ℓd
4.1.81

ℓd
4.1.82

ℓd

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

5/34

Some motivation (plz!)

Developer perspective in time:

org.redisson:redisson

3.17.5

ℓa ℓa
3.17.63.17.5

ℓa ℓa
3.17.7

io.netty:netty-codec4.1.79

ℓd
4.1.80

ℓd
4.1.81

ℓd
4.1.82

ℓd

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

5/34

Some motivation (plz!)

Developer perspective in time:

org.redisson:redisson

3.17.5

ℓa ℓa
3.17.63.17.5

ℓa ℓa
3.17.7

ℓa
3.18.0

ℓa
3.18.1

ℓa
3.17.7

io.netty:netty-codec4.1.79

ℓd
4.1.80

ℓd
4.1.81

ℓd
4.1.82

ℓd
4.1.83

ℓd
4.1.84

ℓd
4.1.85

ℓd

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

5/34

Some motivation (plz!)

Developer perspective in time:

org.redisson:redisson

3.17.5

ℓa ℓa

3.17.63.17.5

ℓa
ℓa

3.17.7

ℓa

3.18.0

ℓa

3.18.1

ℓa

3.17.7

io.netty:netty-codec4.1.79

ℓd
4.1.80

ℓd

4.1.81

ℓd

4.1.82

ℓd

4.1.83

ℓd

4.1.84

ℓd

4.1.85

ℓd
4.1.86

ℓd

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

CVE-2022-41915 disclosed!

affects netty [4.1.83, 4.1.86)

5/34

Some motivation (plz!)

Developer perspective in time:

org.redisson:redisson

3.17.5

ℓa ℓa

3.17.63.17.5

ℓa
ℓa

3.17.7

ℓa

3.18.0

ℓa

3.18.1

ℓa

3.17.7

ℓa

3.19.0

io.netty:netty-codec4.1.79

ℓd
4.1.80

ℓd

4.1.81

ℓd

4.1.82

ℓd

4.1.83

ℓd

4.1.84

ℓd

4.1.85

ℓd
4.1.86

ℓd

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

CVE-2022-41915 disclosed!

affects netty [4.1.83, 4.1.86)

Forced
MOVE

Wrong
MOVE

Correct
STAY

Correct
MOVE

Correct
STAY

5/34

Some motivation (plz!)

Developer perspective in time:

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

ℓa
3.17.6

ℓa
3.17.7

ℓa
3.18.0

ℓa
3.18.1

ℓa
3.19.0

org.redisson:redisson

3.17.5

ℓa

4.1.80

ℓd
4.1.81

ℓd
4.1.82

ℓd
4.1.83

ℓd
4.1.84

ℓd
4.1.85

ℓd
4.1.86

ℓd
io.netty:netty-codec4.1.79

ℓd

Is there a best time to update?
5/34

Questions

Q1 How does time affect the Pr(vuln.)?

▷ best time to update?

Q2 Which other factors affect Pr(vuln.)?

▷ measurable software metrics

6/34

Questions

Q1 How does time affect the Pr(vuln.)?
▷ best time to update?

Q2 Which other factors affect Pr(vuln.)?

▷ measurable software metrics

6/34

Questions

Q1 How does time affect the Pr(vuln.)?
▷ best time to update?

Q2 Which other factors affect Pr(vuln.)?
▷ measurable software metrics

6/34

Outta scopes

1. Unpublished/Undetected vulnerabilities:
• we study publication of CVEs;

• keep it high-level, no code analysis.

2. Probability of exploitation:

• we study publication of CVEs;
• . . . but check the work of the EPSS!

7/34

https://www.first.org/epss/model

Outta scopes

1. Unpublished/Undetected vulnerabilities:
• we study publication of CVEs;
• keep it high-level, no code analysis.

2. Probability of exploitation:

• we study publication of CVEs;
• . . . but check the work of the EPSS!

7/34

https://www.first.org/epss/model

Outta scopes

1. Unpublished/Undetected vulnerabilities:
• we study publication of CVEs;
• keep it high-level, no code analysis.

2. Probability of exploitation:
• we study publication of CVEs;

• . . . but check the work of the EPSS!

7/34

https://www.first.org/epss/model

Outta scopes

1. Unpublished/Undetected vulnerabilities:
• we study publication of CVEs;
• keep it high-level, no code analysis.

2. Probability of exploitation:
• we study publication of CVEs;
• . . . but check the work of the EPSS!

7/34

https://www.first.org/epss/model

Background

1. Introduction

2. Background

3. Forecast model

4. Conclusions

State of the ART Models to predict vulnerabilities

Goal Data Method Approach Projects/Libs. The rare-event nature of vulnerability disclosures usually passes unnoticed

W
or

k

Disc
.

Pre
d.

CV
Es

Co
de VC

S
Dep

.
Co

rr.
Cla

s.
T.S

er. AH SA ML Language # Purport

[4] ✓ ✓ ✓ ✓ C 3

[2] ✓ ✓ ✓ ✓ ✓ PHP 3

[16] ✓ ✓ ✓ ✓ ✓ ✓ Java 4

[5] ✓ ✓ ✓ ✓ ✓ C/C++, PHP, Java, JS, SQLSQL 10

Find vulnerabilities regardless of
existent logs such as CVEs
(although CWEs may be used).
This includes formal methods and
static/dynamic code analysis.

[11] ✓ ✓ ✓ ✓ ✓ C 3

[13] ✓ ✓ ✓ ✓ ✓ C 1

[15] ✓ ✓ ✓ ✓ ✓ ✓ C, ASM 3

[14] ✓ ✓ ✓ ✓ ✓ ✓ C, ASM 1

Detect known vulnerabilities (and
their correlation to developer
activity metrics) from VCS
only—e.g. commit churn, peer
comments, etc.

[6] ✓ ✓ ✓ ✓ ✓ C/C++ 3

[8] ✓ ✓ ✓ ✓ ✓ Java 7

[23] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 4

[24] ✓ ✓ ✓ ✓ ✓ Java 3

[25] ✓ ✓ ✓ ✓ ✓ Java 5

[21] ✓ ✓ ✓ ✓ ✓ C 7

Detect known vulnerabilities (and
their correlation to code metrics)
from code only—e.g. number of
classes, code cloning, cyclomatic
complexity, etc.

[1] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ >150k

[9] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 8

[3] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 5

[7] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++, Java 1

[22] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 2

Detect known vulnerabilities (and
their corr. to code and developer
activity metrics) from both code
and VCS, but without considering
the effect of dependencies in
their propagation.

[18] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 500

[12] ✓ ✓ ✓ ✓ ✓ ✓ Java >300k

[19] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java, Ruby, Python 450

[17] ✓ ✓ ✓ ✓ ✓ ✓ Java 200

Detect known vulnerabilities using
code or VCS, via dependency-
aware models that can find the
offending code to help correcting
it (own vs. third-party libraries).

[26] ✓ ✓ ✓ ✓ ✓ Agnostic 9

[10] ✓ ✓ ✓ ✓ ✓ Agnostic 25

[20] ✓ ✓ ✓ ✓ Agnostic 5

Time regression to predict
vulnerabilities from NVD logs, but
the models lack data from the
security domain. 9/34

https://upload.wikimedia.org/wikipedia/commons/f/f8/Wallpapersden.com_anonymous-hacker-working_1280x720.jpg

State of the ART Models to predict vulnerabilities

Goal Data Method Approach Projects/Libs. The rare-event nature of vulnerability disclosures usually passes unnoticed

W
or

k

Disc
.

Pre
d.

CV
Es

Co
de VC

S
Dep

.
Co

rr.
Cla

s.
T.S

er. AH SA ML Language # Purport

[4] ✓ ✓ ✓ ✓ C 3

[2] ✓ ✓ ✓ ✓ ✓ PHP 3

[16] ✓ ✓ ✓ ✓ ✓ ✓ Java 4

[5] ✓ ✓ ✓ ✓ ✓ C/C++, PHP, Java, JS, SQLSQL 10

Find vulnerabilities regardless of
existent logs such as CVEs
(although CWEs may be used).
This includes formal methods and
static/dynamic code analysis.

[11] ✓ ✓ ✓ ✓ ✓ C 3

[13] ✓ ✓ ✓ ✓ ✓ C 1

[15] ✓ ✓ ✓ ✓ ✓ ✓ C, ASM 3

[14] ✓ ✓ ✓ ✓ ✓ ✓ C, ASM 1

Detect known vulnerabilities (and
their correlation to developer
activity metrics) from VCS
only—e.g. commit churn, peer
comments, etc.

[6] ✓ ✓ ✓ ✓ ✓ C/C++ 3

[8] ✓ ✓ ✓ ✓ ✓ Java 7

[23] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 4

[24] ✓ ✓ ✓ ✓ ✓ Java 3

[25] ✓ ✓ ✓ ✓ ✓ Java 5

[21] ✓ ✓ ✓ ✓ ✓ C 7

Detect known vulnerabilities (and
their correlation to code metrics)
from code only—e.g. number of
classes, code cloning, cyclomatic
complexity, etc.

[1] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ >150k

[9] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 8

[3] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 5

[7] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++, Java 1

[22] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 2

Detect known vulnerabilities (and
their corr. to code and developer
activity metrics) from both code
and VCS, but without considering
the effect of dependencies in
their propagation.

[18] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 500

[12] ✓ ✓ ✓ ✓ ✓ ✓ Java >300k

[19] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java, Ruby, Python 450

[17] ✓ ✓ ✓ ✓ ✓ ✓ Java 200

Detect known vulnerabilities using
code or VCS, via dependency-
aware models that can find the
offending code to help correcting
it (own vs. third-party libraries).

[26] ✓ ✓ ✓ ✓ ✓ Agnostic 9

[10] ✓ ✓ ✓ ✓ ✓ Agnostic 25

[20] ✓ ✓ ✓ ✓ Agnostic 5

Time regression to predict
vulnerabilities from NVD logs, but
the models lack data from the
security domain.

M
os

tw
or

ks
tr

y
to

di
sc

ov
er

cu
rr

en
tv

ul
ne

ra
bi

lit
ie

s,
no

tp
re

di
ct

fu
tu

re
on

es

9/34

https://upload.wikimedia.org/wikipedia/commons/f/f8/Wallpapersden.com_anonymous-hacker-working_1280x720.jpg

State of the ART Models to predict vulnerabilities

Goal Data Method Approach Projects/Libs. The rare-event nature of vulnerability disclosures usually passes unnoticed

W
or

k

Disc
.

Pre
d.

CV
Es

Co
de VC

S
Dep

.
Co

rr.
Cla

s.
T.S

er. AH SA ML Language # Purport

[4] ✓ ✓ ✓ ✓ C 3

[2] ✓ ✓ ✓ ✓ ✓ PHP 3

[16] ✓ ✓ ✓ ✓ ✓ ✓ Java 4

[5] ✓ ✓ ✓ ✓ ✓ C/C++, PHP, Java, JS, SQLSQL 10

Find vulnerabilities regardless of
existent logs such as CVEs
(although CWEs may be used).
This includes formal methods and
static/dynamic code analysis.

[11] ✓ ✓ ✓ ✓ ✓ C 3

[13] ✓ ✓ ✓ ✓ ✓ C 1

[15] ✓ ✓ ✓ ✓ ✓ ✓ C, ASM 3

[14] ✓ ✓ ✓ ✓ ✓ ✓ C, ASM 1

Detect known vulnerabilities (and
their correlation to developer
activity metrics) from VCS
only—e.g. commit churn, peer
comments, etc.

[6] ✓ ✓ ✓ ✓ ✓ C/C++ 3

[8] ✓ ✓ ✓ ✓ ✓ Java 7

[23] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 4

[24] ✓ ✓ ✓ ✓ ✓ Java 3

[25] ✓ ✓ ✓ ✓ ✓ Java 5

[21] ✓ ✓ ✓ ✓ ✓ C 7

Detect known vulnerabilities (and
their correlation to code metrics)
from code only—e.g. number of
classes, code cloning, cyclomatic
complexity, etc.

[1] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ >150k

[9] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 8

[3] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 5

[7] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++, Java 1

[22] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 2

Detect known vulnerabilities (and
their corr. to code and developer
activity metrics) from both code
and VCS, but without considering
the effect of dependencies in
their propagation.

[18] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 500

[12] ✓ ✓ ✓ ✓ ✓ ✓ Java >300k

[19] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java, Ruby, Python 450

[17] ✓ ✓ ✓ ✓ ✓ ✓ Java 200

Detect known vulnerabilities using
code or VCS, via dependency-
aware models that can find the
offending code to help correcting
it (own vs. third-party libraries).

[26] ✓ ✓ ✓ ✓ ✓ Agnostic 9

[10] ✓ ✓ ✓ ✓ ✓ Agnostic 25

[20] ✓ ✓ ✓ ✓ Agnostic 5

Time regression to predict
vulnerabilities from NVD logs, but
the models lack data from the
security domain.

M
os

tw
or

ks
tr

y
to

di
sc

ov
er

cu
rr

en
tv

ul
ne

ra
bi

lit
ie

s,
no

tp
re

di
ct

fu
tu

re
on

es

M
os

tw
or

ks
di

sr
eg

ar
d

th
e

co
de

de
pe

nd
en

cy
tr

ee

9/34

https://upload.wikimedia.org/wikipedia/commons/f/f8/Wallpapersden.com_anonymous-hacker-working_1280x720.jpg

State of the ART Models to predict vulnerabilities

Goal Data Method Approach Projects/Libs. The rare-event nature of vulnerability disclosures usually passes unnoticed

W
or

k

Disc
.

Pre
d.

CV
Es

Co
de VC

S
Dep

.
Co

rr.
Cla

s.
T.S

er. AH SA ML Language # Purport

[4] ✓ ✓ ✓ ✓ C 3

[2] ✓ ✓ ✓ ✓ ✓ PHP 3

[16] ✓ ✓ ✓ ✓ ✓ ✓ Java 4

[5] ✓ ✓ ✓ ✓ ✓ C/C++, PHP, Java, JS, SQLSQL 10

Find vulnerabilities regardless of
existent logs such as CVEs
(although CWEs may be used).
This includes formal methods and
static/dynamic code analysis.

[11] ✓ ✓ ✓ ✓ ✓ C 3

[13] ✓ ✓ ✓ ✓ ✓ C 1

[15] ✓ ✓ ✓ ✓ ✓ ✓ C, ASM 3

[14] ✓ ✓ ✓ ✓ ✓ ✓ C, ASM 1

Detect known vulnerabilities (and
their correlation to developer
activity metrics) from VCS
only—e.g. commit churn, peer
comments, etc.

[6] ✓ ✓ ✓ ✓ ✓ C/C++ 3

[8] ✓ ✓ ✓ ✓ ✓ Java 7

[23] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 4

[24] ✓ ✓ ✓ ✓ ✓ Java 3

[25] ✓ ✓ ✓ ✓ ✓ Java 5

[21] ✓ ✓ ✓ ✓ ✓ C 7

Detect known vulnerabilities (and
their correlation to code metrics)
from code only—e.g. number of
classes, code cloning, cyclomatic
complexity, etc.

[1] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ >150k

[9] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 8

[3] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 5

[7] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++, Java 1

[22] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 2

Detect known vulnerabilities (and
their corr. to code and developer
activity metrics) from both code
and VCS, but without considering
the effect of dependencies in
their propagation.

[18] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 500

[12] ✓ ✓ ✓ ✓ ✓ ✓ Java >300k

[19] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java, Ruby, Python 450

[17] ✓ ✓ ✓ ✓ ✓ ✓ Java 200

Detect known vulnerabilities using
code or VCS, via dependency-
aware models that can find the
offending code to help correcting
it (own vs. third-party libraries).

[26] ✓ ✓ ✓ ✓ ✓ Agnostic 9

[10] ✓ ✓ ✓ ✓ ✓ Agnostic 25

[20] ✓ ✓ ✓ ✓ Agnostic 5

Time regression to predict
vulnerabilities from NVD logs, but
the models lack data from the
security domain.

M
os

tw
or

ks
tr

y
to

di
sc

ov
er

cu
rr

en
tv

ul
ne

ra
bi

lit
ie

s,
no

tp
re

di
ct

fu
tu

re
on

es

M
os

tw
or

ks
di

sr
eg

ar
d

th
e

co
de

de
pe

nd
en

cy
tr

ee

M
os

tw
or

ks
do

no
tc

on
si

de
rt

im
e

in
th

ei
ra

na
ly

se
s

9/34

https://upload.wikimedia.org/wikipedia/commons/f/f8/Wallpapersden.com_anonymous-hacker-working_1280x720.jpg

State of the ART Models to predict vulnerabilities

Goal Data Method Approach Projects/Libs. The rare-event nature of vulnerability disclosures usually passes unnoticed

W
or

k

Disc
.

Pre
d.

CV
Es

Co
de VC

S
Dep

.
Co

rr.
Cla

s.
T.S

er. AH SA ML Language # Purport

[4] ✓ ✓ ✓ ✓ C 3

[2] ✓ ✓ ✓ ✓ ✓ PHP 3

[16] ✓ ✓ ✓ ✓ ✓ ✓ Java 4

[5] ✓ ✓ ✓ ✓ ✓ C/C++, PHP, Java, JS, SQLSQL 10

Find vulnerabilities regardless of
existent logs such as CVEs
(although CWEs may be used).
This includes formal methods and
static/dynamic code analysis.

[11] ✓ ✓ ✓ ✓ ✓ C 3

[13] ✓ ✓ ✓ ✓ ✓ C 1

[15] ✓ ✓ ✓ ✓ ✓ ✓ C, ASM 3

[14] ✓ ✓ ✓ ✓ ✓ ✓ C, ASM 1

Detect known vulnerabilities (and
their correlation to developer
activity metrics) from VCS
only—e.g. commit churn, peer
comments, etc.

[6] ✓ ✓ ✓ ✓ ✓ C/C++ 3

[8] ✓ ✓ ✓ ✓ ✓ Java 7

[23] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 4

[24] ✓ ✓ ✓ ✓ ✓ Java 3

[25] ✓ ✓ ✓ ✓ ✓ Java 5

[21] ✓ ✓ ✓ ✓ ✓ C 7

Detect known vulnerabilities (and
their correlation to code metrics)
from code only—e.g. number of
classes, code cloning, cyclomatic
complexity, etc.

[1] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ >150k

[9] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 8

[3] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 5

[7] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++, Java 1

[22] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 2

Detect known vulnerabilities (and
their corr. to code and developer
activity metrics) from both code
and VCS, but without considering
the effect of dependencies in
their propagation.

[18] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 500

[12] ✓ ✓ ✓ ✓ ✓ ✓ Java >300k

[19] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java, Ruby, Python 450

[17] ✓ ✓ ✓ ✓ ✓ ✓ Java 200

Detect known vulnerabilities using
code or VCS, via dependency-
aware models that can find the
offending code to help correcting
it (own vs. third-party libraries).

[26] ✓ ✓ ✓ ✓ ✓ Agnostic 9

[10] ✓ ✓ ✓ ✓ ✓ Agnostic 25

[20] ✓ ✓ ✓ ✓ Agnostic 5

Time regression to predict
vulnerabilities from NVD logs, but
the models lack data from the
security domain.

M
os

tw
or

ks
tr

y
to

di
sc

ov
er

cu
rr

en
tv

ul
ne

ra
bi

lit
ie

s,
no

tp
re

di
ct

fu
tu

re
on

es

M
os

tw
or

ks
di

sr
eg

ar
d

th
e

co
de

de
pe

nd
en

cy
tr

ee

M
os

tw
or

ks
do

no
tc

on
si

de
rt

im
e

in
th

ei
ra

na
ly

se
s

Disregarded
security
data

9/34

https://upload.wikimedia.org/wikipedia/commons/f/f8/Wallpapersden.com_anonymous-hacker-working_1280x720.jpg

State of the ART Models to predict vulnerabilities

Q2 Pr(vuln.) as function of software metrics

▶ ML & statistical analysis to correlate SE metrics to existent vulner-
abilities

▶ human-in-the-loop metrics, including VCS (#commits, seniority. . .)
▶ (a few) considerations of own and 3rd party dependencies

Q1 Pr(vuln.) as function of time

▶ time-regression models on CVE publications (≈ FinTech)

9/34

State of the ART Models to predict vulnerabilities

Q2 Pr(vuln.) as function of software metrics

▶ ML & statistical analysis to correlate SE metrics to existent vulner-
abilities

▶ human-in-the-loop metrics, including VCS (#commits, seniority. . .)
▶ (a few) considerations of own and 3rd party dependencies

Q1 Pr(vuln.) as function of time

▶ time-regression models on CVE publications (≈ FinTech)

9/34

State of the ART Models to predict vulnerabilities

Q2 Pr(vuln.) as function of software metrics

▶ ML & statistical analysis to correlate SE metrics to existent vulner-
abilities

▶ human-in-the-loop metrics, including VCS (#commits, seniority. . .)

▶ (a few) considerations of own and 3rd party dependencies

Q1 Pr(vuln.) as function of time

▶ time-regression models on CVE publications (≈ FinTech)

9/34

State of the ART Models to predict vulnerabilities

Q2 Pr(vuln.) as function of software metrics

▶ ML & statistical analysis to correlate SE metrics to existent vulner-
abilities

▶ human-in-the-loop metrics, including VCS (#commits, seniority. . .)
▶ (a few) considerations of own and 3rd party dependencies

Q1 Pr(vuln.) as function of time

▶ time-regression models on CVE publications (≈ FinTech)

9/34

State of the ART Models to predict vulnerabilities

Q2 Pr(vuln.) as function of software metrics

▶ ML & statistical analysis to correlate SE metrics to existent vulner-
abilities

▶ human-in-the-loop metrics, including VCS (#commits, seniority. . .)
▶ (a few) considerations of own and 3rd party dependencies

Q1 Pr(vuln.) as function of time

▶ time-regression models on CVE publications (≈ FinTech)

9/34

Gap analysis

• Studies typically try to detect, not foretell vulnerabilities.

• The dependency tree is seldom analysed (own code only).

• The rare-event nature of vulnerabilities is disregarded.

We propose white-box model(s) to fill these gaps

10/34

Gap analysis

• Studies typically try to detect, not foretell vulnerabilities.

• The dependency tree is seldom analysed (own code only).

• The rare-event nature of vulnerabilities is disregarded.

We propose white-box model(s) to fill these gaps

10/34

Gap analysis

• Studies typically try to detect, not foretell vulnerabilities.

• The dependency tree is seldom analysed (own code only).

• The rare-event nature of vulnerabilities is disregarded.

We propose white-box model(s) to fill these gaps

10/34

Gap analysis

• Studies typically try to detect, not foretell vulnerabilities.

• The dependency tree is seldom analysed (own code only).

• The rare-event nature of vulnerabilities is disregarded.

We propose white-box model(s) to fill these gaps

10/34

Forecast model

1. Introduction

2. Background

3. Forecast model

4. Conclusions

Forecast model

1. Introduction

2. Background

3. Forecast model

4. Conclusions

Time Dependency Trees

CVE root-lib PDFs

Time Dependency Trees

Dependency Trees in time

D(ℓa1):

13/34

Time Dependency Trees

Dependency Trees in time

D(ℓa1):
D(ℓa2):

13/34

Time Dependency Trees

Dependency Trees in time

D(ℓa1):
D(ℓa2):

D(ℓa3):

13/34

Time Dependency Trees

Dependency Trees in time

{D(ℓai)}3i=1:

13/34

Time Dependency Trees

Dependency Trees in time

{D(ℓai)}3i=1:

dependency

c-chain

Time Dependency Tree

DT (ℓa)DT (ℓa):

13/34

Time Dependency Trees

Dependency Trees in time

{D(ℓai)}3i=1:

dependency

c-chain

Time Dependency Tree

DT (ℓa)DT (ℓa):

Main library (ℓa)

13/34

Time Dependency Trees

Dependency Trees in time

{D(ℓai)}3i=1:

dependency

c-chain

Time Dependency Tree

DT (ℓa)DT (ℓa):

Main library (ℓa)

Time span (T)

13/34

Time Dependency Trees

Dependency Trees in time

{D(ℓai)}3i=1:

dependency

c-chain

Time Dependency Tree

DT (ℓa)DT (ℓa):

Main library (ℓa)

Time span (T)Dt(ℓa) = D(ℓa1)

for any time point t ∈ T

after the release of ℓa1 and
before the release of ℓa2

13/34

Properties of TDT DT (ℓ)DT (ℓ)

Theoretical

• Minimal graph representation (no lib-version repetition)

• Canonical for library ℓ and time span T

• Natural lifting of dependency trees to time

Practical

• Time-indexing D t(ℓ) yields the dep. tree at time t ∈ T

• Library-slicing DT (ℓ)
∣∣
d

yields all instances of
dependency d during time T

• Reachability analysis can spot single-points-of-failure

14/34

Properties of TDT DT (ℓ)DT (ℓ)

Theoretical

• Minimal graph representation (no lib-version repetition)

• Canonical for library ℓ and time span T

• Natural lifting of dependency trees to time

Practical

• Time-indexing D t(ℓ) yields the dep. tree at time t ∈ T

• Library-slicing DT (ℓ)
∣∣
d

yields all instances of
dependency d during time T

• Reachability analysis can spot single-points-of-failure

14/34

Properties of TDT DT (ℓ)DT (ℓ)

Theoretical

• Minimal graph representation (no lib-version repetition)

• Canonical for library ℓ and time span T

• Natural lifting of dependency trees to time

Practical

• Time-indexing D t(ℓ) yields the dep. tree at time t ∈ T

• Library-slicing DT (ℓ)
∣∣
d

yields all instances of
dependency d during time T

• Reachability analysis can spot single-points-of-failure

14/34

Properties of TDT DT (ℓ)DT (ℓ)

Theoretical

• Minimal graph representation (no lib-version repetition)

• Canonical for library ℓ and time span T

• Natural lifting of dependency trees to time

Practical

• Time-indexing D t(ℓ) yields the dep. tree at time t ∈ T

• Library-slicing DT (ℓ)
∣∣
d

yields all instances of
dependency d during time T

• Reachability analysis can spot single-points-of-failure

14/34

Properties of TDT DT (ℓ)DT (ℓ)

Theoretical

• Minimal graph representation (no lib-version repetition)

• Canonical for library ℓ and time span T

• Natural lifting of dependency trees to time

Practical

• Time-indexing D t(ℓ) yields the dep. tree at time t ∈ T

• Library-slicing DT (ℓ)
∣∣
d

yields all instances of
dependency d during time T

• Reachability analysis can spot single-points-of-failure

14/34

Properties of TDT DT (ℓ)DT (ℓ)

Theoretical

• Minimal graph representation (no lib-version repetition)

• Canonical for library ℓ and time span T

• Natural lifting of dependency trees to time

Practical

• Time-indexing D t(ℓ) yields the dep. tree at time t ∈ T

• Library-slicing DT (ℓ)
∣∣
d

yields all instances of
dependency d during time T

• Reachability analysis can spot single-points-of-failure

14/34

Properties of TDT DT (ℓ)DT (ℓ)

Theoretical

• Minimal graph representation (no lib-version repetition)

• Canonical for library ℓ and time span T

• Natural lifting of dependency trees to time

Practical

• Time-indexing D t(ℓ) yields the dep. tree at time t ∈ T

• Library-slicing DT (ℓ)
∣∣
d

yields all instances of
dependency d during time T

• Reachability analysis can spot single-points-of-failure

14/34

SPoF in time and dependencies

My personal project uses ℓ1.0

15/34

SPoF in time and dependencies

My personal project uses ℓ1.0

15/34

SPoF in time and dependencies

My personal project uses ℓ1.0

Should I downgrade to ℓ0.9 or upgrade to ℓ1.1?

15/34

Properties of TDT DT (ℓ)DT (ℓ)

Theoretical

• Minimal graph representation (no lib-version repetition)

• Canonical for library ℓ and time span T

• Natural lifting of dependency trees to time

Practical

• Time-indexing D t(ℓ) yields the dep. tree at time t ∈ T

• Library-slicing DT (ℓ)
∣∣
d

yields all instances of
dependency d during time T

• Reachability analysis can spot single-points-of-failure

• Can measure health/risk of development environment

16/34

Properties of TDT DT (ℓ)DT (ℓ)

Theoretical

• Minimal graph representation (no lib-version repetition)

• Canonical for library ℓ and time span T

• Natural lifting of dependency trees to time

Practical

• Time-indexing D t(ℓ) yields the dep. tree at time t ∈ T

• Library-slicing DT (ℓ)
∣∣
d

yields all instances of
dependency d during time T

• Reachability analysis can spot single-points-of-failure

• Can measure health/risk of development environment

16/34

Forecast model

1. Introduction

2. Background

3. Forecast model

4. Conclusions

Time Dependency Trees

CVE root-lib PDFs

Publication of CVE since time of code release

org.redisson:redisson

3.17.5

ℓa ℓa

3.17.63.17.5

ℓa
ℓa

3.17.7

ℓa

3.18.0

ℓa

3.18.1

ℓa

3.17.7

io.netty:netty-codec4.1.79

ℓd
4.1.80

ℓd

4.1.81

ℓd

4.1.82

ℓd

4.1.83

ℓd

4.1.84

ℓd

4.1.85

ℓd
4.1.86

ℓd

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

CVE-2022-41915 disclosed!

affects netty [4.1.83, 4.1.86)

18/34

Publication of CVE since time of code release

org.redisson:redisson

3.17.5

ℓa ℓa

3.17.63.17.5

ℓa
ℓa

3.17.7

ℓa

3.18.0

ℓa

3.18.1

ℓa

3.17.7

io.netty:netty-codec4.1.79

ℓd
4.1.80

ℓd

4.1.81

ℓd

4.1.82

ℓd

4.1.83

ℓd

4.1.84

ℓd

4.1.85

ℓd
4.1.86

ℓd

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

CVE-2022-41915 disclosed!

affects netty [4.1.83, 4.1.86)

18/34

Publication of CVE since time of code release

org.redisson:redisson

3.17.5

ℓa ℓa

3.17.63.17.5

ℓa
ℓa

3.17.7

ℓa

3.18.0

ℓa

3.18.1

ℓa

3.17.7

io.netty:netty-codec4.1.79

ℓd
4.1.80

ℓd

4.1.81

ℓd

4.1.82

ℓd

4.1.83

ℓd

4.1.84

ℓd

4.1.85

ℓd
4.1.86

ℓd

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

CVE-2022-41915 disclosed!

affects netty [4.1.83, 4.1.86)

18/34

Publication of CVE since time of code release

org.redisson:redisson

3.17.5

ℓa ℓa

3.17.63.17.5

ℓa
ℓa

3.17.7

ℓa

3.18.0

ℓa

3.18.1

ℓa

3.17.7

io.netty:netty-codec4.1.79

ℓd
4.1.80

ℓd

4.1.81

ℓd

4.1.82

ℓd

4.1.83

ℓd

4.1.84

ℓd

4.1.85

ℓd
4.1.86

ℓd

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

CVE-2022-41915 disclosed!

affects netty [4.1.83, 4.1.86)

18/34

Publication of CVE since time of code release

org.redisson:redisson

3.17.5

ℓa ℓa

3.17.63.17.5

ℓa
ℓa

3.17.7

ℓa

3.18.0

ℓa

3.18.1

ℓa

3.17.7

io.netty:netty-codec4.1.79

ℓd
4.1.80

ℓd

4.1.81

ℓd

4.1.82

ℓd

4.1.83

ℓd

4.1.84

ℓd

4.1.85

ℓd
4.1.86

ℓd

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

CVE-2022-41915 disclosed!

affects netty [4.1.83, 4.1.86)

18/34

Publication of CVE since time of code release

org.redisson:redisson

3.17.5

ℓa ℓa

3.17.63.17.5

ℓa
ℓa

3.17.7

ℓa

3.18.0

ℓa

3.18.1

ℓa

3.17.7

io.netty:netty-codec4.1.79

ℓd
4.1.80

ℓd

4.1.81

ℓd

4.1.82

ℓd

4.1.83

ℓd

4.1.84

ℓd

4.1.85

ℓd
4.1.86

ℓd

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

CVE-2022-41915 disclosed!

affects netty [4.1.83, 4.1.86)

Time since lib. release

Pr
ob
ab
ili
ty

 o
f C

VE
 p

ub
lic

.

1M 2M 3M 4M ... 18/34

Publication of CVE since time of code release

org.redisson:redisson

3.17.5

ℓa ℓa

3.17.63.17.5

ℓa
ℓa

3.17.7

ℓa

3.18.0

ℓa

3.18.1

ℓa

3.17.7

io.netty:netty-codec4.1.79

ℓd
4.1.80

ℓd

4.1.81

ℓd

4.1.82

ℓd

4.1.83

ℓd

4.1.84

ℓd

4.1.85

ℓd
4.1.86

ℓd

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

CVE-2022-41915 disclosed!

affects netty [4.1.83, 4.1.86)

Time since lib. release

Pr
ob
ab
ili
ty

 o
f C

VE
 p

ub
lic

.

1M 2M 3M 4M ... 18/34

Rules of the game

▶ Count each CVE as one data point
• must choose one affected version!

▶ Discriminate per development environment

• e.g. Java and C/C++ have different vuln. (and times!)

▶ Discriminate per library type

• consider security-relevant code metrics

19/34

Rules of the game

▶ Count each CVE as one data point

3.17.5

ℓa
ℓa
3.17.6

3.17.5

ℓa

ℓa
3.17.7 ℓa

3.18.0 ℓa
3.18.1

ℓa
3.17.7

ℓa
3.19.0

4.1.79

ℓd

4.1.80

ℓd
4.1.81

ℓd
4.1.82

ℓd
4.1.83

ℓd
4.1.84

ℓd
4.1.85

ℓd

4.1.86

ℓd
Sep'22

Aug'22

Jul'22

Dec'22

Oct'22
Nov'22

time
• must choose one affected version!

▶ Discriminate per development environment

• e.g. Java and C/C++ have different vuln. (and times!)

▶ Discriminate per library type

• consider security-relevant code metrics

19/34

Rules of the game

▶ Count each CVE as one data point

3.17.5

ℓa
ℓa
3.17.6

3.17.5

ℓa

ℓa
3.17.7 ℓa

3.18.0 ℓa
3.18.1

ℓa
3.17.7

ℓa
3.19.0

4.1.79

ℓd

4.1.80

ℓd
4.1.81

ℓd
4.1.82

ℓd
4.1.83

ℓd
4.1.84

ℓd
4.1.85

ℓd

4.1.86

ℓd
Sep'22

Aug'22

Jul'22

Dec'22

Oct'22
Nov'22

time
• must choose one affected version!

▶ Discriminate per development environment

• e.g. Java and C/C++ have different vuln. (and times!)

▶ Discriminate per library type

• consider security-relevant code metrics

19/34

Rules of the game

▶ Count each CVE as one data point
• must choose one affected version!

▶ Discriminate per development environment
• e.g. Java and C/C++ have different vuln. (and times!)

▶ Discriminate per library type

• consider security-relevant code metrics

19/34

Rules of the game

▶ Count each CVE as one data point
• must choose one affected version!

▶ Discriminate per development environment
• e.g. Java and C/C++ have different vuln. (and times!)

▶ Discriminate per library type

• consider security-relevant code metrics

19/34

Rules of the game

▶ Count each CVE as one data point
• must choose one affected version!

▶ Discriminate per development environment
• e.g. Java and C/C++ have different vuln. (and times!)

▶ Discriminate per library type
• consider security-relevant code metrics

19/34

Rules of the game

▶ Count each CVE as one data point
• must choose one affected version!

▶ Discriminate per development environment
• e.g. Java and C/C++ have different vuln. (and times!)

▶ Discriminate per library type
• consider security-relevant code metrics

19/34

Security-relevant code metrics

20/34

Security-relevant code metrics

Used in remote networks

20/34

Security-relevant code metrics

20/34

Security-relevant code metrics

(Own) Code size

20/34

Security-relevant code metrics

Goal Data Method Approach Projects/Libs. The rare-event nature of vulnerability disclosures usually passes unnoticed

W
or

k

Disc
.

Pre
d.

CV
Es

Co
de VC

S
Dep

.
Co

rr.
Cla

s.
T.S

er. AH SA ML Language # Purport

[4] ✓ ✓ ✓ ✓ C 3

[2] ✓ ✓ ✓ ✓ ✓ PHP 3

[16] ✓ ✓ ✓ ✓ ✓ ✓ Java 4

[5] ✓ ✓ ✓ ✓ ✓ C/C++, PHP, Java, JS, SQLSQL 10

Find vulnerabilities regardless of
existent logs such as CVEs
(although CWEs may be used).
This includes formal methods and
static/dynamic code analysis.

[11] ✓ ✓ ✓ ✓ ✓ C 3

[13] ✓ ✓ ✓ ✓ ✓ C 1

[15] ✓ ✓ ✓ ✓ ✓ ✓ C, ASM 3

[14] ✓ ✓ ✓ ✓ ✓ ✓ C, ASM 1

Detect known vulnerabilities (and
their correlation to developer
activity metrics) from VCS
only—e.g. commit churn, peer
comments, etc.

[6] ✓ ✓ ✓ ✓ ✓ C/C++ 3

[8] ✓ ✓ ✓ ✓ ✓ Java 7

[23] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 4

[24] ✓ ✓ ✓ ✓ ✓ Java 3

[25] ✓ ✓ ✓ ✓ ✓ Java 5

[21] ✓ ✓ ✓ ✓ ✓ C 7

Detect known vulnerabilities (and
their correlation to code metrics)
from code only—e.g. number of
classes, code cloning, cyclomatic
complexity, etc.

[1] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ >150k

[9] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 8

[3] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 5

[7] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++, Java 1

[22] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 2

Detect known vulnerabilities (and
their corr. to code and developer
activity metrics) from both code
and VCS, but without considering
the effect of dependencies in
their propagation.

[18] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 500

[12] ✓ ✓ ✓ ✓ ✓ ✓ Java >300k

[19] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java, Ruby, Python 450

[17] ✓ ✓ ✓ ✓ ✓ ✓ Java 200

Detect known vulnerabilities using
code or VCS, via dependency-
aware models that can find the
offending code to help correcting
it (own vs. third-party libraries).

[26] ✓ ✓ ✓ ✓ ✓ Agnostic 9

[10] ✓ ✓ ✓ ✓ ✓ Agnostic 25

[20] ✓ ✓ ✓ ✓ Agnostic 5

Time regression to predict
vulnerabilities from NVD logs, but
the models lack data from the
security domain. 20/34

https://upload.wikimedia.org/wikipedia/commons/f/f8/Wallpapersden.com_anonymous-hacker-working_1280x720.jpg

Security-relevant code metrics

Own-code size

Us
ed

in
re

m
ot

e
ne

tw
or

ks

20/34

Security-relevant code metrics

Own-code size

Us
ed

in
re

m
ot

e
ne

tw
or

ks

20/34

Security-relevant code metrics

Own-code size

Us
ed

in
re

m
ot

e
ne

tw
or

ks

20/34

Security-relevant code metrics

Own-code size

Us
ed

in
re

m
ot

e
ne

tw
or

ks

20/34

Security-relevant code metrics

Own-code size

Us
ed

in
re

m
ot

e
ne

tw
or

ks

20/34

Security-relevant code metrics

Own-code size

Us
ed

in
re

m
ot

e
ne

tw
or

ks

20/34

Security-relevant code metrics

Own-code size

Us
ed

in
re

m
ot

e
ne

tw
or

ks

Time since lib. release

Pr
ob
ab
ili
ty

 o
f C

VE
 p

ub
lic

.

1M 2M 3M 4M ...

Time since lib. release

Pr
ob
ab
ili
ty

 o
f

CV
E

pu
bl

ic
.

1M 2M 3M 4M ...

Time since lib. release
Pr
ob
ab
ili
ty

 o
f

CV
E

pu
bl

ic
.

1M 2M 3M 4M ...

Time since lib. release

Pr
ob
ab
ili
ty

 o
f C

VE
 p

ub
lic

.

1M 2M 3M 4M ...

20/34

Security-relevant code metrics

Own-code size

Us
ed

in
re

m
ot

e
ne

tw
or

ks

20/34

On overfitting and rare events

Time since lib. release

Pr
ob
ab
ili
ty

 o
f

CV
E

pu
bl

ic
.

1M 2M 3M 4M ...

Time since lib. release
Pr
ob
ab
ili
ty

 o
f C

VE
 p

ub
lic

.

1M 2M 3M 4M ...

▶ Count each CVE as one data point

▶ Discriminate per development environment

▶ Discriminate per library type

▶ Clusterisation mustn’t be too thin

• few divisions per metric-dimension
• few metric-dimensions

21/34

On overfitting and rare events

▶ Count each CVE as one data point

▶ Discriminate per development environment

▶ Discriminate per library type

▶ Clusterisation mustn’t be too thin

• few divisions per metric-dimension
• few metric-dimensions

21/34

On overfitting and rare events

▶ Count each CVE as one data point

▶ Discriminate per development environment

▶ Discriminate per library type

▶ Clusterisation mustn’t be too thin

• few divisions per metric-dimension
• few metric-dimensions

21/34

On overfitting and rare events

▶ Count each CVE as one data point

▶ Discriminate per development environment

▶ Discriminate per library type

▶ Clusterisation mustn’t be too thin

• few divisions per metric-dimension
• few metric-dimensions

21/34

On overfitting and rare events

▶ Count each CVE as one data point

▶ Discriminate per development environment

▶ Discriminate per library type

▶ Clusterisation mustn’t be too thin
• few divisions per metric-dimension
• few metric-dimensions

21/34

Enough!

Gimme results

Here ya go

22/34

Here ya go

Q1 Pr(vuln.) as function of time

Q2 Pr(vuln.) as function of software metrics
22/34

Survival analysis on library update

org.redisson:redisson

3.17.5

ℓa ℓa
3.17.63.17.5

ℓa

io.netty:netty-codec4.1.79

ℓd
4.1.80

ℓd
4.1.81

ℓd
4.1.82

ℓd

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

22/34

Survival analysis on library update

org.redisson:redisson

3.17.5
ℓa ℓa

3.17.63.17.5
ℓa

io.netty:netty-codec4.1.79
ℓd

4.1.80
ℓd

4.1.81
ℓd

4.1.82
ℓd

ℓa
3.17.7

? ? ? ?

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

22/34

Survival analysis on library update
org.redisson:redisson

3.17.5
ℓa ℓa

3.17.63.17.5
ℓa

io.netty:netty-codec4.1.79
ℓd

4.1.80
ℓd

4.1.81
ℓd

4.1.82
ℓd

ℓa
3.17.7

? ? ? ?

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

A
t−→ B means that we change from dependency

ℓA to ℓB in t time units counting from t0 (“today”).

▷ ℓA was released on tA < t0, ℓB on tB < t0, tA ▷◁ tB

Q: PrA,B(t) = probability of vuln. of A t−→ B as a function of t

A: PrA,B(t) = 1− SFA

(
t+∆tA

)
CDFB

(
t+∆tB

)
where ∆tx

.
= |tx − t0|

22/34

Survival analysis on library update
org.redisson:redisson

3.17.5
ℓa ℓa

3.17.63.17.5
ℓa

io.netty:netty-codec4.1.79
ℓd

4.1.80
ℓd

4.1.81
ℓd

4.1.82
ℓd

ℓa
3.17.7

? ? ? ?

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

A
t−→ B means that we change from dependency

ℓA to ℓB in t time units counting from t0 (“today”).

▷ ℓA was released on tA < t0, ℓB on tB < t0, tA ▷◁ tB

Q: PrA,B(t) = probability of vuln. of A t−→ B as a function of t

A: PrA,B(t) = 1− SFA

(
t+∆tA

)
CDFB

(
t+∆tB

)
where ∆tx

.
= |tx − t0|

22/34

Survival analysis on library update
org.redisson:redisson

3.17.5
ℓa ℓa

3.17.63.17.5
ℓa

io.netty:netty-codec4.1.79
ℓd

4.1.80
ℓd

4.1.81
ℓd

4.1.82
ℓd

ℓa
3.17.7

? ? ? ?

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

A
t−→ B means that we change from dependency

ℓA to ℓB in t time units counting from t0 (“today”).

▷ ℓA was released on tA < t0, ℓB on tB < t0, tA ▷◁ tB

Q: PrA,B(t) = probability of vuln. of A t−→ B as a function of t

A: PrA,B(t) = 1− SFA

(
t+∆tA

)
CDFB

(
t+∆tB

)
where ∆tx

.
= |tx − t0|

22/34

Survival analysis on library update
org.redisson:redisson

3.17.5
ℓa ℓa

3.17.63.17.5
ℓa

io.netty:netty-codec4.1.79
ℓd

4.1.80
ℓd

4.1.81
ℓd

4.1.82
ℓd

ℓa
3.17.7

? ? ? ?

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

A
t−→ B means that we change from dependency

ℓA to ℓB in t time units counting from t0 (“today”).

▷ ℓA was released on tA < t0, ℓB on tB < t0, tA ▷◁ tB

Q: PrA,B(t) = probability of vuln. of A t−→ B as a function of t

A: PrA,B(t) = 1− SFA

(
t+∆tA

)
CDFB

(
t+∆tB

)
where ∆tx

.
= |tx − t0|

vuln. in ℓA before change vuln. in ℓB after change

22/34

Survival analysis on library update
org.redisson:redisson

3.17.5
ℓa ℓa

3.17.63.17.5
ℓa

io.netty:netty-codec4.1.79
ℓd

4.1.80
ℓd

4.1.81
ℓd

4.1.82
ℓd

ℓa
3.17.7

? ? ? ?

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

A
t−→ B means that we change from dependency

ℓA to ℓB in t time units counting from t0 (“today”).

▷ ℓA was released on tA < t0, ℓB on tB < t0, tA ▷◁ tB

Q: PrA,B(t) = probability of vuln. of A t−→ B as a function of t

A: PrA,B(t) = 1− SFA

(
t+∆tA

)
CDFB

(
t+∆tB

)
where ∆tx

.
= |tx − t0|

vuln. in ℓA before change vuln. in ℓB after change

22/34

Survival analysis on library update
org.redisson:redisson

3.17.5
ℓa ℓa

3.17.63.17.5
ℓa

io.netty:netty-codec4.1.79
ℓd

4.1.80
ℓd

4.1.81
ℓd

4.1.82
ℓd

ℓa
3.17.7

? ? ? ?

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

A
t−→ B means that we change from dependency

ℓA to ℓB in t time units counting from t0 (“today”).

▷ ℓA was released on tA < t0, ℓB on tB < t0, tA ▷◁ tB

Q: PrA,B(t) = probability of vuln. of A t−→ B as a function of t

A: PrA,B(t) = 1− SFA

(
t+∆tA

)
CDFB

(
t+∆tB

)
where ∆tx

.
= |tx − t0|

tA = 184 days
tB = 21 days 22/34

Survival analysis on library update
org.redisson:redisson

3.17.5
ℓa ℓa

3.17.63.17.5
ℓa

io.netty:netty-codec4.1.79
ℓd

4.1.80
ℓd

4.1.81
ℓd

4.1.82
ℓd

ℓa
3.17.7

? ? ? ?

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

A
t−→ B means that we change from dependency

ℓA to ℓB in t time units counting from t0 (“today”).

▷ ℓA was released on tA < t0, ℓB on tB < t0, tA ▷◁ tB

Q: PrA,B(t) = probability of vuln. of A t−→ B as a function of t

A: PrA,B(t) = 1− SFA

(
t+∆tA

)
CDFB

(
t+∆tB

)
where ∆tx

.
= |tx − t0|

tA = 184 days
tB = 21 days

tA = 17 days
tB = 85 days 22/34

Survival analysis on library update
org.redisson:redisson

3.17.5
ℓa ℓa

3.17.63.17.5
ℓa

io.netty:netty-codec4.1.79
ℓd

4.1.80
ℓd

4.1.81
ℓd

4.1.82
ℓd

ℓa
3.17.7

? ? ? ?

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

A
t−→ B means that we change from dependency

ℓA to ℓB in t time units counting from t0 (“today”).

▷ ℓA was released on tA < t0, ℓB on tB < t0, tA ▷◁ tB

Q: PrA,B(t) = probability of vuln. of A t−→ B as a function of t

A: PrA,B(t) = 1− SFA

(
t+∆tA

)
CDFB

(
t+∆tB

)
where ∆tx

.
= |tx − t0|

tA = 184 days
tB = 21 days

tA = 17 days
tB = 85 days

vuln. likely
to hit

vuln.
likely
to hit

global min:
best moment to change,
avoiding peaks of vuln.
from both libraries

1Q 2Q 3Q 1Y

22/34

Survival analysis on library update
org.redisson:redisson

3.17.5
ℓa ℓa

3.17.63.17.5
ℓa

io.netty:netty-codec4.1.79
ℓd

4.1.80
ℓd

4.1.81
ℓd

4.1.82
ℓd

ℓa
3.17.7

? ? ? ?

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

A
t−→ B means that we change from dependency

ℓA to ℓB in t time units counting from t0 (“today”).

▷ ℓA was released on tA < t0, ℓB on tB < t0, tA ▷◁ tB

Q: PrA,B(t) = probability of vuln. of A t−→ B as a function of t

A: PrA,B(t) = 1− SFA

(
t+∆tA

)
CDFB

(
t+∆tB

)
where ∆tx

.
= |tx − t0|

tA = 184 days
tB = 21 days

tA = 17 days
tB = 85 days

0 1Q 2Q 3Q 1Y 5Q
0

1Q

2Q

3Q

1Y

5Q

0.0

0.2

0.4

0.6

0.8

1.0

SFA

CDFB

22/34

Survival analysis on library update
org.redisson:redisson

3.17.5
ℓa ℓa

3.17.63.17.5
ℓa

io.netty:netty-codec4.1.79
ℓd

4.1.80
ℓd

4.1.81
ℓd

4.1.82
ℓd

ℓa
3.17.7

? ? ? ?

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

A
t−→ B means that we change from dependency

ℓA to ℓB in t time units counting from t0 (“today”).

▷ ℓA was released on tA < t0, ℓB on tB < t0, tA ▷◁ tB

Q: PrA,B(t) = probability of vuln. of A t−→ B as a function of t

A: PrA,B(t) = 1− SFA

(
t+∆tA

)
CDFB

(
t+∆tB

)
where ∆tx

.
= |tx − t0|

tA = 184 days
tB = 21 days

tA = 17 days
tB = 85 days

0 1Q 2Q 3Q 1Y 5Q
0

1Q

2Q

3Q

1Y

5Q

0.0

0.2

0.4

0.6

0.8

1.0

SFA

CDFB

22/34

Survival analysis on library update
org.redisson:redisson

3.17.5
ℓa ℓa

3.17.63.17.5
ℓa

io.netty:netty-codec4.1.79
ℓd

4.1.80
ℓd

4.1.81
ℓd

4.1.82
ℓd

ℓa
3.17.7

? ? ? ?

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

A
t−→ B means that we change from dependency

ℓA to ℓB in t time units counting from t0 (“today”).

▷ ℓA was released on tA < t0, ℓB on tB < t0, tA ▷◁ tB

Q: PrA,B(t) = probability of vuln. of A t−→ B as a function of t

A: PrA,B(t) = 1− SFA

(
t+∆tA

)
CDFB

(
t+∆tB

)
where ∆tx

.
= |tx − t0|

tA = 184 days
tB = 21 days

tA = 17 days
tB = 85 days

0 1Q 2Q 3Q 1Y 5Q
0

1Q

2Q

3Q

1Y

5Q

0.0

0.2

0.4

0.6

0.8

1.0

SFA

CDFB

22/34

Vulnerabilities from any dependency

Q: PrA,B(t) = probability of vuln. in ℓA or ℓB before t

A: PrA,B(t) = Pr(min(ℓA, ℓB) ⩽ t) = 1− (1− PrA(t))(1− PrB(t))

23/34

Vulnerabilities from any dependency

Q: PrA,B(t) = probability of vuln. in ℓA or ℓB before t

A: PrA,B(t) = Pr(min(ℓA, ℓB) ⩽ t) = 1− (1− PrA(t))(1− PrB(t))

23/34

Vulnerabilities from any dependency

Q: PrA,B(t) = probability of vuln. in ℓA or ℓB before t

A: PrA,B(t) = Pr(min(ℓA, ℓB) ⩽ t) = 1− (1− PrA(t))(1− PrB(t))

ℓA ℓB

23/34

Vulnerabilities from any dependency

Q: PrA,B(t) = probability of vuln. in ℓA or ℓB before t

A: PrA,B(t) = Pr(min(ℓA, ℓB) ⩽ t) = 1− (1− PrA(t))(1− PrB(t))

ℓA ℓB

23/34

Vulnerabilities from any dependency

Q: PrA,B(t) = probability of vuln. in ℓA or ℓB before t

A: PrA,B(t) = Pr(min(ℓA, ℓB) ⩽ t) = 1− (1− PrA(t))(1− PrB(t))

ℓA ℓB

tA = 123 days
tB = 14 days

23/34

Vulnerabilities from any dependency

Q: PrA,B(t) = probability of vuln. in ℓA or ℓB before t

A: PrA,B(t) = Pr(min(ℓA, ℓB) ⩽ t) = 1− (1− PrA(t))(1− PrB(t))

ℓA ℓB

tA = 123 days
tB = 14 days

tA = 28 days
tB = 60 days

23/34

Vulnerabilities from any dependency

Q: PrA,B(t) = probability of vuln. in ℓA or ℓB before t

A: PrA,B(t) = Pr(min(ℓA, ℓB) ⩽ t) = 1− (1− PrA(t))(1− PrB(t))

ℓA ℓB

tA = 123 days
tB = 14 days

tA = 28 days
tB = 60 days

23/34

Vulnerabilities from any dependency

Q: PrA,B(t) = probability of vuln. in ℓA or ℓB before t

A: PrA,B(t) = Pr(min(ℓA, ℓB) ⩽ t) = 1− (1− PrA(t))(1− PrB(t))

ℓA ℓB

tA = 123 days
tB = 14 days

tA = 28 days
tB = 60 days

Nice for 2
dependencies. . .

23/34

Vulnerabilities from any dependency

Q: PrA,B(t) = probability of vuln. in ℓA or ℓB before t

A: PrA,B(t) = Pr(min(ℓA, ℓB) ⩽ t) = 1− (1− PrA(t))(1− PrB(t))

ℓA ℓB

tA = 123 days
tB = 14 days

tA = 28 days
tB = 60 days

Nice for 2
dependencies. . .

I have 2000

23/34

Vulnerabilities from any dependency

Q: PrA,B(t) = probability of vuln. in ℓA or ℓB before t

A: PrA,B(t) = Pr(min(ℓA, ℓB) ⩽ t) = 1− (1− PrA(t))(1− PrB(t))

ℓA ℓB

tA = 123 days
tB = 14 days

tA = 28 days
tB = 60 days

Nice for 2
dependencies. . .

I have 2000

TDTs !

23/34

Forecast model

1. Introduction

2. Background

3. Forecast model

4. Conclusions

Time Dependency Trees

CVE root-lib PDFs

Conclusions

1. Introduction

2. Background

3. Forecast model

4. Conclusions

Some things done

▶ Time Dependency Trees

• Aggregate dependency and code-evolution data
• Minimal representation with nice properties
• Framework for large-scale project analysis

▶ Probability of vulnerabilities as a function of time

• Express time from library release to CVE publication
• Discriminate per type of library (security-relevant props.)
• Base information for probability forecasting

26/34

Some things done

▶ Time Dependency Trees
• Aggregate dependency and code-evolution data

• Minimal representation with nice properties
• Framework for large-scale project analysis

▶ Probability of vulnerabilities as a function of time

• Express time from library release to CVE publication
• Discriminate per type of library (security-relevant props.)
• Base information for probability forecasting

26/34

Some things done

▶ Time Dependency Trees
• Aggregate dependency and code-evolution data
• Minimal representation with nice properties

• Framework for large-scale project analysis

▶ Probability of vulnerabilities as a function of time

• Express time from library release to CVE publication
• Discriminate per type of library (security-relevant props.)
• Base information for probability forecasting

26/34

Some things done

▶ Time Dependency Trees
• Aggregate dependency and code-evolution data
• Minimal representation with nice properties
• Framework for large-scale project analysis

▶ Probability of vulnerabilities as a function of time

• Express time from library release to CVE publication
• Discriminate per type of library (security-relevant props.)
• Base information for probability forecasting

26/34

Some things done

▶ Time Dependency Trees
• Aggregate dependency and code-evolution data
• Minimal representation with nice properties
• Framework for large-scale project analysis

▶ Probability of vulnerabilities as a function of time

• Express time from library release to CVE publication
• Discriminate per type of library (security-relevant props.)
• Base information for probability forecasting

26/34

Some things done

▶ Time Dependency Trees
• Aggregate dependency and code-evolution data
• Minimal representation with nice properties
• Framework for large-scale project analysis

▶ Probability of vulnerabilities as a function of time
• Express time from library release to CVE publication

• Discriminate per type of library (security-relevant props.)
• Base information for probability forecasting

26/34

Some things done

▶ Time Dependency Trees
• Aggregate dependency and code-evolution data
• Minimal representation with nice properties
• Framework for large-scale project analysis

▶ Probability of vulnerabilities as a function of time
• Express time from library release to CVE publication
• Discriminate per type of library (security-relevant props.)

• Base information for probability forecasting

26/34

Some things done

▶ Time Dependency Trees
• Aggregate dependency and code-evolution data
• Minimal representation with nice properties
• Framework for large-scale project analysis

▶ Probability of vulnerabilities as a function of time
• Express time from library release to CVE publication
• Discriminate per type of library (security-relevant props.)
• Base information for probability forecasting

26/34

Some things done

▶ Other metrics to clusterise libraries for PDF-fitting

▶ Validate in other languages (all Java so far)

▶ SPoF detection—across versions—in Java/Maven

▶ c-chains polution by CVE

27/34

Some things done‹

to beto be

▶ Other metrics to clusterise libraries for PDF-fitting

▶ Validate in other languages (all Java so far)

▶ SPoF detection—across versions—in Java/Maven

▶ c-chains polution by CVE

27/34

Some things done‹

to beto be

▶ Other metrics to clusterise libraries for PDF-fitting

▶ Validate in other languages (all Java so far)

▶ SPoF detection—across versions—in Java/Maven

▶ c-chains polution by CVE

27/34

Some things done‹

to beto be

▶ Other metrics to clusterise libraries for PDF-fitting

▶ Validate in other languages (all Java so far)

▶ SPoF detection—across versions—in Java/Maven

▶ c-chains polution by CVE

27/34

Some things done‹

to beto be

▶ Other metrics to clusterise libraries for PDF-fitting

▶ Validate in other languages (all Java so far)

▶ SPoF detection—across versions—in Java/Maven

▶ c-chains polution by CVE

27/34

Some things done‹

to beto be

▶ Other metrics to clusterise libraries for PDF-fitting

▶ Validate in other languages (all Java so far)

▶ SPoF detection—across versions—in Java/Maven

▶ c-chains polution by CVE

27/34

Questions?

References i

J. Akram and P. Luo.
SQVDT: A scalable quantitative vulnerability detection technique for source
code security assessment.
Software: Practice and Experience, 51(2):294–318, 2021.

M. Alohaly and H. Takabi.
When do changes induce software vulnerabilities?
In CIC, pages 59–66. IEEE, 2017.

H. Alves, B. Fonseca, and N. Antunes.
Software metrics and security vulnerabilities: Dataset and exploratory study.
In EDCC, pages 37–44. IEEE, 2016.

Z. Bilgin, M. A. Ersoy, E. U. Soykan, E. Tomur, P. Çomak, and L. Karaçay.
Vulnerability prediction from source code using machine learning.
IEEE Access, 8:150672–150684, 2020.

A. Bosu, J. C. Carver, M. Hafiz, P. Hilley, and D. Janni.
Identifying the characteristics of vulnerable code changes: An empirical study.
In FSE, pages 257–268. ACM, 2014.

28/34

References ii

S. Chakraborty, R. Krishna, Y. Ding, and B. Ray.
Deep learning based vulnerability detection: Are we there yet.
IEEE Transactions on Software Engineering, 48(9):3280–3296, 2021.

I. Chowdhury and M. Zulkernine.
Using complexity, coupling, and cohesion metrics as early indicators of
vulnerabilities.
Journal of Systems Architecture, 57(3):294–313, 2011.

S. Ganesh, T. Ohlsson, and F. Palma.
Predicting security vulnerabilities using source code metrics.
In SweDS, pages 1–7. IEEE, 2021.

S. Kim, S. Woo, H. Lee, and H. Oh.
VUDDY: A scalable approach for vulnerable code clone discovery.
In SP, pages 595–614. IEEE, 2017.

D. Last.
Forecasting zero-day vulnerabilities.
In CISRC, pages 1–4. ACM, 2016.

29/34

References iii

H. Li, H. Kwon, J. Kwon, and H. Lee.
A scalable approach for vulnerability discovery based on security patches.
In ATIS, volume 490 of CCIS, pages 109–122. Springer, 2014.

Q. Li, J. Song, D. Tan, H. Wang, and J. Liu.
PDGraph: A large-scale empirical study on project dependency of security
vulnerabilities.
In DSN, pages 161–173. IEEE, 2021.

A. Meneely, H. Srinivasan, A. Musa, A. R. Tejeda, M. Mokary, and B. Spates.
When a patch goes bad: Exploring the properties of vulnerability-contributing
commits.
In ESEM, pages 65–74. IEEE, 2013.

A. Meneely and L. Williams.
Secure open source collaboration: An empirical study of Linus’ law.
In CCS, pages 453––462. ACM, 2009.

30/34

References iv

A. Meneely and L. Williams.
Strengthening the empirical analysis of the relationship between Linus’ law and
software security.
In ESEM. ACM, 2010.

Y. Pang, X. Xue, and A. S. Namin.
Predicting vulnerable software components through N-gram analysis and
statistical feature selection.
In ICMLA, pages 543–548. IEEE, 2015.

I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci.
Vulnerable open source dependencies: Counting those that matter.
In ESEM. ACM, 2018.

I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci.
Vuln4Real: A methodology for counting actually vulnerable dependencies.
IEEE Transactions on Software Engineering, 48(5):1592–1609, 2022.

31/34

References v

G. A. A. Prana, A. Sharma, L. K. Shar, D. Foo, A. E. Santosa, A. Sharma, and D. Lo.
Out of sight, out of mind? how vulnerable dependencies affect open-source
projects.
Empirical Software Engineering, 26(4), 2021.

Y. Roumani, J. K. Nwankpa, and Y. F. Roumani.
Time series modeling of vulnerabilities.
Computers & Security, 51:32–40, 2015.

N. Shahmehri, A. Mammar, E. Montes de Oca, D. Byers, A. Cavalli, S. Ardi, and
W. Jimenez.
An advanced approach for modeling and detecting software vulnerabilities.
Information and Software Technology, 54(9):997–1013, 2012.

Y. Shin, A. Meneely, L. Williams, and J. A. Osborne.
Evaluating complexity, code churn, and developer activity metrics as indicators
of software vulnerabilities.
IEEE Transactions on Software Engineering, 37(6):772–787, 2011.

32/34

References vi

K. Z. Sultana, V. Anu, and T.-Y. Chong.
Using software metrics for predicting vulnerable classes and methods in Java
projects: A machine learning approach.
Journal of Software: Evolution and Process, 33(3), 2021.

K. Z. Sultana, A. Deo, and B. J. Williams.
Correlation analysis among Java nano-patterns and software vulnerabilities.
In HASE, pages 69–76. IEEE, 2017.

K. Z. Sultana and B. J. Williams.
Evaluating micro patterns and software metrics in vulnerability prediction.
In SoftwareMining, pages 40–47. IEEE, 2017.

E. Yasasin, J. Prester, G. Wagner, and G. Schryen.
Forecasting IT security vulnerabilities – an empirical analysis.
Computers & Security, 88, 2020.

33/34

Predicting Security Attacks in FOSS
Why you want it and one way to do it

C.E. Budde R. Paramitha F. Massacci
Università di Trento (IT) & Vrije Universiteit (NL)

Vuln4Cast 2023 FIRST Technical Colloquium

	Introduction
	Background
	Forecast model
	TDTs
	PDFs

	Conclusions

