# STIX Patterning: Viva la revolución!

Cyber Threat Intelligence Matters FIRST Technical Symposium and OASIS Borderless Cyber Conference

Jason Keirstead - STSM, IBM Security Trey Darley - Director of Standards Development, New Context

## History vs. mystery

"What the hell were you guys smoking?!"



### What was wrong in STIX 1.x

- Too many ways to define matches (multiple meanings of "Equals")
- Too many ways to define expressions (ANDs and ORs in *both* Indicators and Observables)
  - One analysis found twelve different ways to compare two IP addresses
- Lists are just plain "weird" ( ##comma## need I say more?)
- Despite all this complexity, lacked fundamental capabilities such as temporal matching (A followed by B)



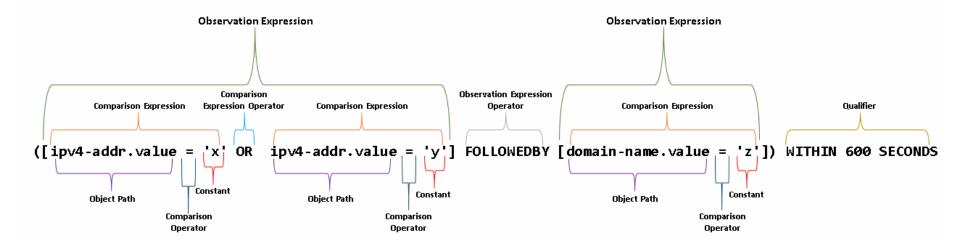
### But (Snort|YARA|OpenIOC|Sigma) already exist?!

- Snort only makes sense on the network
- YARA library only works on a file-like blob
  - Neither allows encoding of malware behaviour information
- OpenIOC limited in expressivity; also limited in network coverage
- Basic use case: malware matching signature **X** will beacon with traffic that looks like **Y** before dropping **Z** 
  - Combination of file attributes, network attributes, sequential / temporal matching
  - This extremely simple use case is **impossible** to model using any of these standards
- Sigma: <u>https://github.com/Neo23x0/sigma</u>
  - Their effort started after we'd already achieved our Committee Specification Draft. We reached out to collaborate but got zero acknowledgement. :-(

#### Questions we asked

- Should we think beyond simple CTI use cases of "find this IOC" ?
- What if our cybersecurity tools could share rules and searches for analytics and correlations?
- What factors have been preventing this from emerging in the industry? Could we have an opportunity to finally move the needle?
- What if SIEM vendor lock-in were to just die in a fire?

#### "We're here to put a dent in the universe." — Steve Jobs


### Basic design principles

- One way to do things (not 12)!
- Base things on a grammar, not nested XML or JSON
  - Makes things easier for humans to understand, **and** for machines to parse!
- Base that grammar on something that as many folks are familiar with as possible
  - Candidates: SQL, Lucene, YARA, Snort/OpenSig...
  - We ended with SQL-like after some debate
- Define a grammar that allows sharing descriptions of advanced threats, not just simple atomic IOCs (ip = 1.2.3.4)
- Define it in a way that was expandable in the future without "breaking changes"

# **Overview of STIX Patterning**

"What's the frequency, Kenneth?"

#### **Basic structure of a STIX Pattern**





### How this ties to STIX Cyber Observables

- Cyber Observables provide a data model for describing things you've *actually* seen.
- STIX Patterning is a language for describing chaotic maliciousness one *might* see.
- SCO (STIX Cyber Observables) : nouns :: STIX Patterning : language
- SCO : DB Tables :: STIX Patterning : SQL

# THIS SOUNDS INCREDIBLY COMPLICATED, I JUST WANTED TO FIND AN IP **ADDRESS**

#### It's not that bad, see!

Finding an IP

Finding a URL

Finding one of two registry keys

[ip-addr.value = '8.8.8.8']

[url:value MATCHES
'^(?:https?:\/\/)?(?:www\.)?example\.com\/.\*']

[windows-registry-key:key =
 'HKEY\_CURRENT\_USER\\Software\\CryptoLocker\\Files
 ' OR windows-registry-key:key =
 'HKEY\_CURRENT\_USER\\Software\\Microsoft\\CurrentV
ersion\\Run\\CryptoLocker\_0388']

### **Currently-defined Cyber Observables**

- Artifact
- AS
- Directory
- Email Address
- Email Message
- File
  - Archive Extension
  - NTFS File Extension
  - PDF File Extension
  - Raster Image File Extension
  - Windows PE Binary File Extension
- IPv4 Address
- IPv6 Address
- MAC Address

- Mutex
- Network Traffic
  - HTTP Request Extension
  - ICMP Extension
  - Network Socket Extension
  - TCP Extension
- Process
  - Windows Process Extension
  - Windows Service Extension
- Software
- User Account
  - UNIX Account Extension
- Windows Registry Key
- X.509 Certificate

# Use cases and examples



### File-based Pattern (vs. YARA)

Basic File with Hexadecimal Payload

STIX Indicator Pattern

}

[file:contents\_ref.payload\_bin MATCHES '\\x65\\x78\\x61\\x6d\\x70\\x6c\\x65' AND file:size > '31284']

Corresponding YARA Rule
rule Example
{
 strings:
 \$hex\_string = { 65 78 61 6d 70 6c 65 }
 condition:
 \$hex string and filesize > 31284

```
Basic File with Textual Payload

<u>STIX Indicator Pattern</u>

[file:contents_ref.payload_bin MATCHES 'this is an example']
```

```
Corresponding YARA Rule
rule Example
{
   strings:
        $text_string = "this is an example"
        condition:
        $text_string
}
```



### Network-based Pattern (vs. Snort)

Basic TCP Network Traffic

STIX Indicator Pattern

[network-traffic:src\_ref.type = 'ipv4-addr' AND network-traffic:src\_ref.value = '192.0.2.1' AND network-traffic:dst\_ref.type = 'ipv4-addr' AND network-traffic:dst\_ref.value = '203.0.113.10' AND network-traffic:dst\_port = '21' AND network-traffic:protocols[\*] = 'tcp']

<u>Corresponding Snort Rule</u> alert tcp 192.0.2.1 any -> 203.0.113.10 21

#### HTTP Network Traffic with User Agent

STIX Indicator Pattern

```
[network-traffic:dst_ref.type = 'ipv4-addr' AND network-traffic:dst_ref.value = '203.0.113.11' AND network-traffic:dst_port = '80'
AND network-traffic:protocols[*] = 'tcp' AND network-traffic:extended_properties.http-ext.request_header.User-Agent =
'Mazilla/5.0']
```

#### Corresponding Snort Rule

```
alert tcp any any -> 203.0.113.11 80 (content:"User-Agent|3a|
Mazilla/5.0"; http_header;)
```



### Watching for "Fileless" UAC Bypass

```
( windows-registry-key:key =
    'HKEY_CURRENT_USER\\Software\\Classes\\exefile\\shell\\runas\\command' AND windows-registry-
key:values[*].name = 'isolatedCommand' )
```

OR

[

[

( windows-registry-key:key = 'HKEY\_CURRENT\_USER\\Microsoft\\Windows\\CurrentVersion\\App
Paths\\control.exe' AND windows-registry-key:values[\*].data != "C:\\Windows\\System32\\cmd.exe" )
]



### **Bad Powershell!**

Γ

Suspicious Powershell has been used

process:command\_line MATCHES
'((.\*NewObject(System)?NetWebClient.\*DownloadFile.\*((StartProcess)|(shellexecute)|(win32\_proc
ess)|(start)|(saps)).\*)|(.\*((iex)|(InvokeExpression)).\*NewObject(System)?NetWebClient.\*Downlo
adString.\*)|(.\*NewObject(System)?NetWebClient.\*DownloadString.\*((iex)|(InvokeExpression)).\*)|
(.\*IEX.\*\[SystemDiagnosticsProcess\]\:\:Start.\*)|(.\*StartBitsTransfer.\*InvokeItem.\*))'



#### **Necurs Botnet**

Looks for a particular malware payload followed by HTTP beaconing traffic generated by the payload:

[file:name = 'rekakva32.exe' AND file:parent\_directory\_ref.path MATCHES
'C:\\Users\\[\\w\\s]+\\AppData\\Local\\Temp'] FOLLOWEDBY [networktraffic:protocols[\*] = 'http' AND network-traffic:extensions.'http-requestext'.request\_method = 'post' AND network-traffic:extensions.'http-requestext'.request\_header.'User-Agent' = 'Windows-Update-Agent']

Source: https://isc.sans.edu/forums/diary/Necurs+Botnet+malspam+pushes+Locky+using+DDE+attack/22946/





### Github all the things!

OASIS Open Repository: TAXII 2 Server Library Written in Python cti-taxii-server: https://github.com/oasis-open/cti-taxii-server

OASIS Open Repository: TAXII 2 Client Library Written in Python cti-taxii-client: <u>https://github.com/oasis-open/cti-taxii-client</u>

OASIS Open Repository: Python APIs for STIX 2 cti-python-stix2: <u>https://github.com/oasis-open/cti-python-stix2</u>

OASIS Open Repository: Match STIX content against STIX patterns

cti-pattern-matcher: https://github.com/oasis-open/cti-pattern-matcher

**OASIS Open Repository: Convert STIX 1.2 XML to STIX 2.0 JSON** 

cti-stix-elevator: https://github.com/oasis-open/cti-stix-elevator



Github all the things (2)!

#### **Translate STIX 2 Patterning Queries Into Splunk and ElasticSearch**

stix2patterns\_translator: https://github.com/mitre/stix2patterns\_translator

#### **Downgrade STIX2 content to STIX1**

cti-stix-slider: https://github.com/oasis-open/cti-stix-slider

#### **Malware Information Sharing Platform & Threat Sharing**

MISP: <u>https://github.com/MISP/MISP</u>

#### A cyber threat intelligence server based on TAXII 2 and written in Golang

freetaxii-server: https://github.com/freetaxii/freetaxii-server

#### APIs for generating STIX 2.x messages with Go (Golang)

libstix2: <a href="https://github.com/freetaxii/libstix2">https://github.com/freetaxii/libstix2</a>

### The CaRT file format is used to store/transfer malware and its associated metadata cse cart: <a href="https://bitbucket.org/cse-assemblyline/cart">https://bitbucket.org/cse-assemblyline/cart</a>

### Github all the things (3)!

#### Convert STIX2 to GraphML or GEXF (Gephi format)

StixConvert: https://github.com/workingDog/StixConvert

#### Convert STIX2 and load into Neo4j graph database

StixToNeoDB: https://github.com/workingDog/StixToNeoDB

Browser-based STIX2 editor, with ability to publish to a TAXII2 server cyberstation: <a href="https://github.com/workingDog/cyberstation">https://github.com/workingDog/cyberstation</a>

#### **STIX2 Scala library**

scalastix: https://github.com/workingDog/scalastix

#### **TAXII2 Scala library**

Taxii2LibScala: https://github.com/workingDog/Taxii2LibScala

#### **TAXII2 JS library**

taxii2lib: https://github.com/workingDog/taxii2lib

# We're Not Done!

### Beyond indicators - analytics use cases

- Threat Intelligence sharing has received a lot of focus; however the analytics to actually **find** things, not so much
- People re-build the same analytics over and over because they either don't know of, or have access to, what has been done many times before
- In order to share analytics in a scalable fashion, a vendor-neutral language for said analytics has to be developed
- We believe SCO Pattern could be the basis for this
- **CAR** The MITRE Cyber Analytics Repository
  - PRE-ATT&CK and ATT&CK based analytics
  - Long-term goal: ability to define the analytics in STIX Patterning
  - Collaborative ecosystem for analytics development

### **Correlation rules**

- SIEM correlation rules share a lot of the same challenges as analytics
  - In fact, they **are** analytics! Imagine!
- Future vision / desire is for SIEM vendors to support SCO Pattern as a method to define rules
  - Reduce / eliminate vendor lock-in
  - Enable broader ecosystem of cross-vendor solutions sharing tools
  - Seamless integration of STIX 2.0 compatible threat intelligence with SIEM correlation engines
- Again, speak to your vendor!
  - Nothing moves ahead without customers demanding it

### It's not perfect...yet.

- Known gaps in SCO object model itself
- Known gaps in language
- We need your help!
- While we believe that STIX Patterning is amongst the most long-term significant innovations in STIX 2.x, it is nevertheless a work product coming out of a very small team of people. If we have succeeded in convincing you that we are not in fact smoking crazy goat-weed, please come join the party!



# tl;dr

#### Thank you!

- Make sure to grab a quick reference card.
- We're having a ½ day STIX/TAXII 2.0 training followed by a ½ day hackathon Friday where you can learn more and try out the tools we discussed.
- Kudos to our colleagues from CIRCL for being so supportive and for early adoption in MISP.
- Thanks to FIRST and OASIS for making this event happen and to you for giving us your attention today!